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Summary

1. Human-mediated dispersal has been shown to be the most important vector for the spread

of invasive species, yet there has been little evaluation of alternative models of dispersal in

terms of differences in their predictions of invasion patterns. Moreover, no analyses have

been attempted to elucidate the potential interaction between alternative models of human-

mediated dispersal and population dynamical characteristics, such as Allee effects, which are

central to the probability of an invasion.

2. Two prominent models in the literature which have previously been employed to predict

human movement patterns are explored: (i) gravity models, which use the attractiveness of

and distance to a location to predict travel patterns, and (ii) random utility models, which

assume that individuals decide where to travel by maximizing the benefits that they receive

according to some partially observable function of individual and site characteristics.

3. While distinction is often drawn between them in the literature, we demonstrate that these

two approaches can be reduced to alternative functional forms describing the trip-taking deci-

sions of individuals.

4. Each model was empirically parameterized using a survey of recreational boaters in Ontario,

Canada. Within each model, both boater- and site-specific characteristics were important and the

functional formprovidedby thegravitymodelwas significantlybetter at capturing thebehaviour of

recreationalboaters.

5. Synthesis and applications. The dispersal and establishment of species into novel habitats

are central components of the invasion process and of quantitative risk assessments. How-

ever, predictions are dependent on the estimated spatial structure of the dispersal network

and its potential interactions with species characteristics. This study demonstrates that Allee

effects can interact with dispersal network structure to significantly alter predicted spread

rates and that the consequences of these interactions manifest differently at the system and

site levels. This modelling framework can be used to inform management interventions aimed

at modifying human-mediated dispersal to reduce the spread of invasive species.

Key-words: Allee effects, dispersal, exotic, gravity model, invasions, networks, non-indigenous,

random utility model, risk, spread

Introduction

Invasive species can cause ecological (Parker et al. 1999;

Pejchar & Mooney 2009) and economic impacts (Aukema

et al. 2011). To prevent or limit the spread of potentially

harmful species, management efforts must be informed by

reliable estimates of where and when we expect new inva-

sions to occur. The overland dispersal (lake to lake

spread) of aquatic invasive species has been shown to be

driven primarily by inadvertent human-mediated trans-

portation. Several species have been observed ‘hitchhik-

ing’ on the hulls and in the ballasts of recreational water

vessels, which are transported on trailers from lake to

lake (Johnson, Ricciardi & Carlton 2001; Kraft et al.
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2002). A recent study by Gertzen & Leung (2011)

comparing human-mediated and fluvial dispersal found

that human-mediated dispersal of an invasive species

accounted for almost all of the propagules contributing to

establishment probability. Understanding where species

are likely to spread via this key human-mediated pathway

is therefore an important step toward implementing miti-

gating measures.

There have been two general classes of modelling

frameworks developed in the literature to characterize the

movement of individuals across a landscape of discrete

sites. Gravity models (GM) have been used extensively to

characterize human movement patterns and have been

applied successfully in several studies to the spread of

invasive species (Leung, Drake & Lodge 2004; Potapov

et al. 2011; Muirhead & MacIsaac 2011). They work by

an analogy to Newtonian gravity, where individuals are

attracted to locations proportionally to their mass (which

can be any set of measures of desirability of the site) and

inversely to the distance between an individual’s current

location, and the site (Schneider, Ellis & Cummings 1998;

Leung, Drake & Lodge 2004; Leung, Bossenbroek &

Lodge 2006). An alternative specification, developed in

the field of recreational demand econometrics, is the dis-

crete choice random utility model (RUM) (Smith &

Kaoru 1986; Smirnov & Egan 2010). In this framework,

individuals choose a destination from a suite of alterna-

tives by maximizing a utility function based on any set of

desirable traits, only part of which is known to the ana-

lyst. This model has been used in several recreational

demand studies (e.g. Smith & Kaoru 1986; Parsons 2000),

but has only recently been applied to the study of spread

of invasive species (Macpherson, Moore & Provencher

2008; Timar & Phaneuf 2009). We show that these models

are quite similar and that they can be reduced to simply

alternative functional forms to describe an individual’s

trip decisions.

While it is clear that human vectors are central to the

invasion process, the ramifications of employing alterna-

tive models of this vector on predicting spread is less

clear. Moreover, although it has not been previously

examined, one might expect that the consequences of dis-

persal models may interact with, and be determined by,

the specific population dynamics of invaders. In particu-

lar, stochasticity and Allee effects, which are both well-

known population level factors affecting invasion dynam-

ics (Clark et al. 2003; Drake et al. 2006).

In this study, we address the following three questions:

(i) Do the alternative human vector modelling frameworks

(gravity and random utility models) differ in their ability

to capture actual human behaviour, and therefore

characterize dispersal vectors of invasive species? (ii)

How do these alternative models interact with the pop-

ulation dynamics of invaders? (iii) What are the implica-

tions of alternative dispersal model specifications on

our predictions of invasion risk across space and time (i.e.

spread)?

We analysed the predictive ability of competing models

of human-mediated dispersal by surveying recreational

boaters and examining the ability of each model to recapture

the observed trip outcomes. We recognized that differ-

ences in model fit are most important if the alternative

model formulations lead to human-mediated dispersal

networks that yield quantitative differences in our predic-

tions of the spread of invasive species. Given the potential

for ecological and economic harm posed by invasive spe-

cies, predictions of spread across a landscape, as well as

invasion risk at specific sites, are vital components of

informed management policies (Landis 2004). Thus, we

conducted a series of simulation experiments to examine

the potential implications of each human-mediated dis-

persal model for risk assessments, taking into account

their interaction with the population dynamics of invad-

ers. We describe how the entropy or evenness of the pre-

dicted connectivity distribution of the dispersal network

can interact with population dynamics to hinder spread.

Taken together, this work provides new insights into how

models of human behaviour affect the predicted structure

of discrete dispersal networks and how the structure of

dispersal networks interact with population level processes

to influence the spatial spread of invasive species.

Materials and methods

SURVEY

We conducted a survey of recreational boaters in Ontario,

Canada. We mailed 5000 invitations to participate in the survey

to individuals with registered recreational licences (boating/fish-

ing) issued by the Ontario Ministry of Natural Resources. Indi-

vidual names were selected using a spatially stratified random

sampling scheme. Approximately 100 invitations were sent to ran-

domly selected individuals in each of 47 major geographical

regions of Ontario as defined by the first two digits of their postal

code. We developed an online survey instrument using the design

approach of Dillman (2000). We employed an interactive map

through which participants could quickly and easily identify the

lakes that they visited. The advantage of this approach was that

we were able to precisely identify lakes that may have been

ambiguous because of multiple naming conventions. In this way,

we were able to collect more in depth information in a visually

intuitive manner. While our survey instrument was only able to

capture individuals with access to the internet, 81% of house-

holds in Ontario had access to the internet as of 2009 (Statistics

Canada, (http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/

comm36g-eng.htm). We have no reason to believe that those with-

out internet access would behave differently vis a vis boating

behaviour than those with online access. We asked participants

to catalogue all of the boating trips that they took and to indi-

cate the primary location where they kept their boat during the

2010 boating season.

Our survey response rate was 11%, with 30% of respondents

indicating that they had visited multiple lakes during 2011. Given

that we are interested in the behaviour of boaters who transport

their boat from lake to lake during the boating season, we

retained only those trip outcomes made by multi-lake boaters.
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This left us with relevant observed source/destination outcomes

for 146 individual boaters across Ontario making a total of 2354

boating trips (Fig. 1).

GRAVITY MODEL SPECIF ICATION

Gravity models employ an analogy to Newtonian gravity, where

the ‘pull’ of a given site is proportional to some function of desir-

able lake characteristics [termed ‘attractiveness’, e.g., size, (Bos-

senbroek, Kraft & Nekola 2001; MacIsaac et al. 2004; Leung,

Bossenbroek & Lodge 2006)] and inversely related to the distance

between a source location and the site. A boater chooses a site to

visit according to the degree to which they are ‘pulled’ to that

site, relative to the degree to which they are pulled by all other

possible sites. While there are many possible formulations of

gravity models, recent comparisons have found that the produc-

tion constrained gravity model provides the best estimate of

human-mediated dispersal of aquatic invasives (Muirhead 2007;

Muirhead & MacIsaac 2011). In the production constrained

formulation, it is assumed that a boater travels from their home

location (primary location where they keep their boat) to a desti-

nation lake and then returns to their home location before visit-

ing another lake. Further, the production constrained gravity

model has modest data requirements compared with its alterna-

tives (Muirhead & MacIsaac 2011), making it an accessible choice

for resource managers. Because we wish to compare models in

terms of their ability to capture individual level behaviour, we

present a disaggregated formulation of the production con-

strained gravity model, in which each individual makes trip desti-

nation decisions according to a probability distribution described

by the model. The site selection probability distribution, P(Tn•)

for an individual boater n is given as:

PGMðTnjÞ ¼ AnW
e
j D

�d
nj ; n ¼ 1; . . .; n; j ¼ 1; . . .; J: eqn 1

Where Wj is the attractiveness of lake j, and Dnj is the distance

between lake j and the home location (where they keep their

boat) of individual n. Some authors suggest the use of least cost

road networks to calculate the effective distance between source

and destination (Drake & Mandrak 2010); however, for simplic-

ity, here we use the euclidian distance between boater home loca-

tion and lake centroid. The free parameters d and e describe the

shape of the relationship and are fitted to the data (see Fitting

and model selection). An is the ‘pull’ of all lakes, given by:

An ¼ 1=
XJ
k¼1

We
kD

�d
nk : eqn 2

Such that the probability of a boater n visiting lake j is propor-

tional to the gravitational ‘pull’ of that lake compared to that of

all other lakes. As a simple proxy for lake attractiveness, we used

lake surface area in hectares. While other lake characteristics may

alter the attractiveness, lake area is most readily available and

has been shown to be predictive in previous studies (Leung,

Drake & Lodge 2004; Leung, Bossenbroek & Lodge 2006; Muir-

head & MacIsaac 2011; Gertzen & Leung 2011).

Furthermore, our survey tool provided us with additional

boater level information, which we were able to incorporate into

the model. Respondents identified which type of boat they owned

Fig. 1. Trips reported by survey respondents. The location where boaters stored their boat during the boating season is indicated with

triangles, destinations are indicated by squares. The thickness of the line between home location and the destination lake is proportional

to the number of trips taken. The right panel shows a zoomed in section of Southern Ontario for better visualization.
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and we categorized them as large motor boat (> 14′), small motor

boat (< 14′) or other. We assumed that boater type would modu-

late the relationship between lake size (W) and probability of visi-

tation. As such, we incorporated this additional information

using dummy variables (B1 and B2) in the exponent of W:

PGMðTnjÞ ¼ AnðWeþb1B1nþb2B2n
j D�d

nj Þ; n ¼ 1; . . .; n; j ¼ 1; . . .; J:

eqn 3

An ¼ 1

�XJ
k¼1

W
eþb1B1nþb2B2n
k D�d

nk eqn 4

Where B1 and B2 equal 0 for large motor boat, B1 equals 0 and

B2 equals 1 for small motor boat, and B1 equals 1 and B2 equals

0 for other. In this way, boat type determines the rate at which

each additional hectare of lake area increases the attractiveness

of a given lake.

RANDOM UTIL ITY MODEL SPECIF ICATION

The RUM is a discrete choice model used extensively in the

econometrics literature to predict the behaviour of recreationalists

(Parsons 2003). This formulation has recently been applied to

predicting the spread of invasive zebra mussels in Wisconsin

(Timar & Phaneuf 2009) and in a simulation study of the spread,

and management of Eurasion watermilfoil (Macpherson, Moore

& Provencher 2008). In this model, boaters are assumed to

behave as rational actors, maximizing their utility. For a given

trip, a boater chooses the site that maximizes their utility function

U, which is only partially observable by the analyst. We can sepa-

rate the utility function, therefore, into two parts. The utility that

boater n would derive from visiting lake j can be then be written

as the sum of the observable part Vnj, and an error term enj.

Unj ¼ Vnj þ enj; n ¼ 1; ...;N; j ¼ 1; . . . J eqn 5

Where Vnj is any linear function of the attributes of boater n and

site j.

Vnj ¼ b~X~nj eqn 4

We can then re-write the utility that would be derived by boater

n by visiting each site in terms of the probability that they will

choose that site over all other alternatives.

PRUMðTnjÞ ¼ PrðUnj �Unk8k 6¼ jÞ
¼ PrðVnj þ enj �Vnk þ enk8k 6¼ jÞ
¼ Prðenk � enj �Vnj � Vnk8k 6¼ jÞ; n ¼ 1; . . .;N; j ¼ 1; . . .J

eqn 7

If we model the error term e using the type I extreme value dis-

tribution as is most commonly done, the model reduces to a sim-

ple logit, and the distribution describing the probability that

boater n will choose to visit lake j is given by:

PRUMðTnjÞ ¼ expðVnjÞPL
k¼1

expðVnkÞ
; n ¼ 1; . . .;N; j ¼ 1; . . . ; J eqn 8

For further details of this model, see Parsons (2003). The

parameters (b) are easily fit given the observed trip outcomes

using maximum likelihood (see Fitting and model selection).

As with the gravity model, we incorporated the additional

boater level predictor of boat type into the utility function of the

RUM. We did this by adding two dummy variables to describe

the three categories of boat type, with the same definitions as in

the gravity model. Our full (observable) utility function is there-

fore formulated as

Vnj ¼ b1Wj þ b2Dnj þ ðb3B1n þ b4B2nÞWj; n ¼ 1; . . .;N; j ¼ 1; . . .; J

eqn 9

As boat type is a boater level variable, we do not include it into

the main effect part of the utility function, as it cancels out when

summing across the entire choice set of a given boater. Instead, we

model the interaction between boat type and lake size (W).

In both the RUM and GM model formulations, we have made

two key assumptions: 1) boater behaviour is constant across time

and 2) boater trips are distributed independently and identically

according to each model.

FITT ING AND MODEL SELECTION

The parameters (h) of each model can be fit using maximum like-

lihood. Our survey data provide us with observations of the num-

ber of trip outcomes Snj, for each boater n, to a given lake j.

From these observations, we can write the log-likelihood for

model M as:

LLMðhjDÞ ¼
XN
n¼1

XJ
j¼1

Snj ln PMðTnj hÞj� �
eqn 10

We fit the parameters of each model, including reduced models

using maximum likelihood implemented in the R statistical pro-

gramming environment (R Development Core Team 2008).

Reduced models were those in which we removed the boater level

parameters pertaining to boat type. Each model was then com-

pared in terms of its relative performance using two separate met-

rics. The first metric of model selection we used was the Akaike

Information Criterion (AIC) (Burnham & Anderson 2002). The

second metric we used was the simple coefficient of determination

(R2) between the predicted and observed total number of trips

taken to each lake in our study system. From this metric, we

could compare the relative proportions of total variation in the

number of visits across all lakes explained by each model.

Spread Simulations: Examining theoretical model

behaviour and interactions with population

demographics

Ultimately, we are constructing our models of human movement

patterns between discrete patches to use in making predictions

about the spread of species that are being dispersed across this

network of patches. While spread is a stochastic process, where

introductions lead to viable population establishments at a given

site in a probabilistic manner, we can use repeated simulations to

characterize the expected trajectory of a given invasion process

(Peck 2004). By simulating the spread process under each of our

competing models, we can compare the predicted trajectories to

make inferences about the consequences of model specification

on spread prediction. Differences in predicted spread rates, as

well as predicted invasion risk at the individual site level may
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have an effect on management decisions regarding mitigation and

control.

To conduct these simulations, we followed the procedure out-

lined in Leung & Delaney (2006). We model the stochastic spread

process as

GðQjtÞ ¼ 1� e�ðaQjtÞc eqn 11

Where the probability of invasion is given as a function of the

number of propagules Q, arriving at time t to site j. The function

is described by two shape parameters. The first, a, is a per propa-

gule multiplier proportional to –ln(1 � p), where p is the per

propagule probability of establishment. The additional parameter

c allows us to describe an Allee effect, where the per propagule

establishment probability is disproportionately lower at low prop-

agule pressures (Dennis 2002). The strength of the Allee effect

increases as c > 1. Non-negligible Allee effects have been

observed in some aquatic invasives. This parameter has been esti-

mated as 1�86 (P < 0�0001; Ho: c = 1) for zebra mussels using an

invasion time series (Leung, Drake & Lodge 2004). Wittmann

et al. (2011) also detected an Allee effect using a stage-structured

model of the invasive zooplankton Bythotrephes.

To calculate the number of propagules Q arriving at site j, we

sum across the probability distribution of each boater having vis-

ited an invaded lake before arriving at site j. To do this, we first

calculate the proportion of boaters at each source location that

have visited an invaded lake as:

Xi;t ¼ Oi

XH
h¼1

PMðTihÞ eqn 12

Where Oi is the number of boaters at source location i, and

PM(Tih) is the probability of a boater at source location i visiting

lake h as given by the model M under which simulations are

being carried out. Xi,t is the number of boaters in source location

i having visited an invaded lake in time step t. We derived Oi

from data obtained from the Ontario Ministry Natural Resources

on the number of registered boaters in Ontario in each of 526

postal regions identified by the first three postal code digits. The

next step is to calculate the propagule pressure Q arriving at lake

j in time t as:

Qj;t ¼
XK
i¼1

PMðTijÞXi;t eqn 13

Which is the total boater traffic from all invaded sources to lake

j in time step t. For more details, see Gertzen & Leung (2011).

While each human vector model predicts a unique trip distribu-

tion matrix, the total number of boater trips taken, or the overall

magnitude of traffic flow in the system as a whole, is constant

across both models. Any difference in the observed rates of

spread in our simulations therefore is a result of the dispersal net-

work structure, and not the absolute magnitude of between-lake

movement.

While there are roughly 250 000 lakes and rivers in Ontario, to

render our simulations computationally feasible, we simulate

spread across only those lakes with a surface area larger than 10

hectares. Additionally, we removed lakes above 52˚latitude, as

these lakes are not accessible by any roadways connecting them

to the southern lakes. This left us with 781 lakes in our simula-

tion set. Each independent simulation began with a seed invasion

in Lake Ontario and was run forward 30 years. By seeding the

invasion in Lake Ontario, we recreate the most likely invasion

scenario for Ontario inland lakes. As of 2006, the great lakes are

known to have been invaded by at least 182 species (Ricciardi

2006), making it the most likely source location of a novel species

spread to inland lakes.

To analyse potential interactions between population dynamics

and the human vector model, we examined the effect of popula-

tion establishment parameters and we ran repeated simulations

across a range of parameter values of both a (7�5-
e05,1�0e�04,1�25e�04,1�5e�04) and c (1,1�5,2,2�5). For each sim-

ulation, we used either the best fitting GM or RUM of boater

behaviour. As our metrics of invasion progress, for each run, we

retained the cumulative number of lakes invaded. An example

realization of our simulated spread procedure can be seen in

Fig. 2. Additionally, we compared the relative invasion risk at

each of three specific selected sites. Lakes Simcoe, Nipissing and

Nipigon were selected because of their large size, making them

more at risk to invasion, as well as because of their relative dis-

tances from the source location of invasion. While these lakes by

no means represent a random sample, they provide a convenient

gradient of baseline risk along which to observe the rate at which

deviations between models occur. For these lakes, we retained the

time to invasion across every simulation for every parameter

combination. We calculated the risk to a given lake as the pro-

portion of simulation realizations in which the site became

invaded before the end of the 30-year time horizon.

Results

MODEL FITT ING AND MODEL SELECTION

Formal model selection identified, the GM as the most

likely, given the data. The GM provided superior fit to

the RUM with a DAIC value of 3229 between the full

GM and the full RUM, for the observed pattern of

boater trips. Table 1 provides the DAIC for each model,

sorted in increasing order (decreasing order of goodness-

of-fit). Maximum likelihood parameter estimates and their

95% confidence intervals for each full model are given in

Table 2. All fitted parameter values have direction and

magnitude that we would expect. In the gravity model,

0 < e < 1, indicating a diminishing marginal effect of each

additional hectare of lake surface area. The boater-specific

dummy variables (b1 > 0, b2 < 0) indicate that the mar-

ginal effect of each additional hectare decreases fastest for

small motor boats. That d > 0 indicates that closer lakes

are more attractive than more distant ones. Similarly, in

the RUM b1 > 0 and b2 < 0 indicate a positive

relationship between lake area and utility, and a negative

relationship between distance and utility, respectively. As

with the gravity model b3 > 0 and b4 < 0 indicate that the

marginal utility of an additional hectare diminishes fastest

for mall motor boats. The full GM was able to account

for 58% of the variation in trip outcomes across all

boaters, compared to only 42% for the full RUM

(Fig. 3). As a check for bias, we fit a linear regression to

the predicted-observed points. The equations of fit were

© 2012 The Authors. Journal of Applied Ecology © 2012 British Ecological Society, Journal of Applied Ecology, 49, 1113–1123
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y = 0�00018[±0�00016] + 0�86[±0�034] xGM and

y = �0�00031[±0�00018] + 1�24[±0�058] xRUM. While nei-

ther intercepts deviate significantly from zero, the slope of

the GM is less than one, indicating a tendency to overesti-

mate the traffic to high frequency lakes, while the RUM

tends to underestimate traffic to high frequency lakes.

There are three main components of the differences

between the dispersal networks predicted by each model.

(i) Each model generally predicted higher traffic to large

lakes that are close to dense population sources, as

expected. However, the rank ordering of individual lakes

can differ substantially within this broader pattern

(Fig. 4a). (ii) The average predicted distance travelled by

boaters was higher in the GM (190 km) compared to the

RUM (140 km) and (iii) How evenly, or unevenly, the

predicted traffic was spread across different sites dif-

fered between models. To quantitatively evaluate this
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Fig. 2. Map of an example outcome of a spread simulation. Triangles indicate lakes that have become invaded as of time t. Shown is a

single realization of the spread process under the gravity model with parameters a = 1�25e � 04, c = 2.

Table 1. Model comparison by delta Akaike information crite-

rion (DAIC)

Model DAIC

Gravity models (GM)

PGM
nj ¼ AnðWðeþb1B1þb2B2Þ

j D�d�
nj Þ

0

PGM
nj ¼ AnðWe

jD
�d
nj Þ

62

Random utility model (RUM)

Unj ¼ b1Wj þ b2Dnj þ ðb3B1n þ b4B2nÞWj þ ey
3139

Unj ¼ b1Wj þ b2Dnj þ ey
3187

Null

Pj ¼ 1=J
14732

*An follows the same form as the parenthetical part shown in the

table.

†Shown are only the utility (both the observable and random)

components of the random utility model. See eqns 5–9 for full

specification.

Table 2. Maximum likelihood parameter values and 95% confi-

dence intervals for each human vector model

Parameter MLE ðĥÞ 95% CI

Gravity models (GM)

e 0�51 [0�486, 0�525]
b1 0�14 [0�083, 0�203]
b2 �0�13 [�0�179, �0�0883]
d 1�86 [1�82, 1�89]
Random utility model (RUM)

b1 0�0011 [0�00106, 0�0012]
b2 �1�40 [�1�447, �1�344]
b3 0�00043 [0�000273, 0�000578]
b4 �0�00044 [�0�000614, �0�000276]
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characteristic, we calculated the Shannon entropy of the

traffic distributions predicted by the two models. Entropy

can be thought of as a measure of evenness (Hill 1973).

Probability distributions with higher entropy are more

evenly dispersed. As entropy decreases, the distribution

becomes more uneven, or more sharply peaked, such that

more of the mass of the distribution is concentrated in

fewer sites. We calculate the Shannon entropy of the pre-

dicted distributions P for model M as:

HðPMÞ ¼ �
XI

i¼1

PM
i logðPM

i Þ eqn 14

As H(PM) ? 0, boater traffic is concentrated entirely in

one lake. The maximum entropy distribution would be

that which assigns Pi = 1/n to all lakes in the system.

Comparing the predictions of the two models, we find

that the gravity model [H(PGM) = 5�018] represents a

more uneven predicted distribution than that of the RUM

[H(PRUM) = 5�36]. The stronger concentration of traffic

predicted by the GM, compared with the RUM can be

seen by comparison of the rank-ordered distributions in

Fig. 4b. The consequences of these differences are analy-

sed in the following section.

IMPL ICATIONS FOR SPREAD AND RISK ASSESSMENT

When the per propagule probability of establishment is

low (low a) and there is no Allee effect present, both dis-

persal models predict similar rates during the early phases

of invasion (Fig. 5). The deviations between early rates of

spread under the alternative dispersal models increases

drastically, however, as the strength of the Allee effect

increases. At the extreme end of invasiveness and Allee

effect (a = 1�5e�04 and c = 2�5), we observe an over ten-

fold increase in the cumulative total number of sites

invaded by the end of the 30-year time horizon. The

degree of deviation induced by increased Allee strength is

also modulated by the independent population growth, or

per propagule invasiveness parameter a. This can be seen

by observing the magnitude of deviation at each row of

Fig. 5, which increases as the parameter a increases.

In the absence of an Allee effect, the deviations in late-

stage rates of spread can be accounted for by the differ-

ences in predicted mean distance travelled under each

model. Spread in Southern Ontario occurs at similar rates

under each model because of high population density,

where the distances between population sources and lakes

are short. However, as the invasion progresses northward

into the more sparsely populated regions, spread under

the RUM is slowed substantially because of the increased

distances required to reach additional lakes. When an

Allee effect is present, the difference in spread rate is

apparent throughout the entire time series. The relative

entropies of the dispersal distributions (i.e. the variance in

total inbound propagules arriving across all uninvaded

sites) can account for this further deviation. The expected

rate at which the proportion of previously uninvaded sites

become invaded can be written as R = E[G(Q●t)], where

G(Q●t) is a vector of invasion probabilities for all

uninvaded sites and is given by Eqn. 11. When an Allee

effect is present, the function G(Q●t) is concave over part

of its range. By Jensen’s inequality, we know that for a

convex function E[G(Q●t)] � G[E(Q●t)]. From this we

can see that as the variance of inbound propagules

increases over the concave range as a result of a more

uneven dispersal distribution, the rate of new invasions

increases as well.

Spread at the landscape level may be of interest to

regional managers; however, the risk of invasion posed at

specific sites will inform management decisions made at

the lake level. To see the differences in the site-level

invasion risk predicted by our alternative dispersal mod-

els, we also looked at three specific inland lakes (Lakes

Simcoe, Nipissing and Nipigon). These three lakes occur

at increasing distances from our source location (Lake
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Ontario), respectively. By observing the differences in

invasion risk predicted at these sites, it is possible to see

how uncertainty and deviations between model predic-

tions increase as we move further from the source of inva-

sion. Figure 6 shows probability of invasion (risk) as a

function of time at each of the three sites across our range

of population parameters. The risk of invasion posed at

each of these three sites is always higher under the GM,

with the exception Lakes Nipissing and Nipigon under

strong Allee effect where projected risk is very near zero

and indistinguishable between models.

Discussion

In this study, we have shown that a GM can better cap-

ture the behaviour of individual boaters in Ontario than

an RUM. Ultimately, these two alternative models can

be represented simply as different functional forms which

we can use to describe a boater’s trip-taking probability

distribution. In the case of our sample of Ontario boat-

ers, the functional form of the GM provides a better

representation of the probabilistic process through which

boaters select which lakes to visit from a suite of alterna-

tives.

Both of the behavioural models considered in this study

were built using only the distance between the boater

source location, lake size (surface area in hectares) and

boat type as explanatory factors. We recognize that there

may be a suite of additional variables that may add fur-

ther explanatory power. Previous work has incorporated

additional lake predictors, as well as additional interac-

tions between individual level and lake variables. These

have included lake clarity (measured as secci depth), cost

of access and whether or not a given boater is an angler

(Parsons 2000; Timar & Phaneuf 2009). Here, we have

used lake size, distance from boater’s home location, and

boat type as these are the most readily available data with

which to build a model of boater behaviour for the pur-

poses of assessing invasion risk. Both the gravity and

RUMs can easily be extended to incorporate any number
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of additional lake and boater-specific variables. In the

RUM, one would need simply to include additional

linear, or higher order, predictors (b) in Vnj (see Eqn 9).

Within a GM, lake level predictors could be modelled by

the expansion of Wj into:

W
eþb1X1jþ...þbiXij

j eqn 15

With additional explanatory variables of lake attractive-

ness each requiring the fitting of an additional free param-

eter (see Fitting and model selection).

We have also demonstrated that the choice of model-

ling framework used to characterize the human-mediated

vector can have important consequences for predicting the

future spread of invasive species. The deviation between

spread predictions under the two frameworks analysed

here interact with population level factors of the invading

species. In the presence of a strong Allee effect, boaters

behaving according to RUM do not act in such a way as

to generate propagule pressures high enough to overcome

the demographical barriers to establishment. The inability

to overcome these barriers is a consequence of the even-

ness of the predicted trip distribution of boaters under the

RUM, as measured using the Shannon entropy of the pre-

dicted trip distribution. Without the centralized ‘hub’

lakes (those highly connected lakes with very high visita-

tion frequency) predicted by the GM, a situation can arise

where there is not a sufficiently concentrated flow of indi-

viduals from invaded lakes to uninvaded lakes. The data

suggests rather that individuals do act in such a way as to

concentrate traffic to a small number of ‘hub’ lakes, as

predicted by a GM, and that this level of concentration is

sufficient to overcome even very strong demographical

barriers. The existence of such hub lakes and their impor-

tance to the spread of aquatic invasive species has been

noted in the literature (MacIsaac et al. 2004; Muirhead &

Macisaac 2005). A misspecified behavioural model of

human-mediated dispersal may underestimate the impor-

tance of these sites, leading to potentially overoptimistic

projections of lake to lake spread.

We also know, however, that just predicting the rate of

spread may not be the most relevant metric of interest to

a resource manager who is making decisions at the local

level. A more relevant measure at the lake level is the risk

of invasion posed at particular sites. We analysed how

our dispersal models affect site-level predictions of risk by

pulling out three of the larger, more important sites in

Ontario, Lakes Simcoe, Nipissing and Nipigon. For these

specific lakes, the predicted probability of establishment

over time differed dramatically between the GMs and

RUMs, even in the absence of Allee effects. Indeed, these

are three of the largest inland lakes in Ontario, all of

which are probably receiving sufficient propagule pressure

rather early on to overcome the demographical barrier of

an Allee effect. From this result, we can see that the way

in which the underlying behavioural model interacts with

the population dynamics of the invading species manifests

differently at the site level, than at the landscape level.

When making policy decisions regarding invasive spe-

cies, managers need informed estimates of invasion risk

across space and time (Epanchin-Niell & Hastings 2010).

This study suggests that for boaters in Ontario, a GM of

individual behaviour most accurately characterizes this

single most important vector of overland invasive spread

and that alternative formulations of human vector dis-

persal models can interact with the population dynamics

of the invading species to produce large deviations in pre-

dicted spread. These deviations manifest differently at the

system level than at the level of individual lakes. While

managers of inland freshwater resources should be aware

of how these interactions impact assessments of risk, our

results are general and hold for any species spreading

across a network of discrete patches.

Future work could look at the utility of implementing

GMs in the context of management interventions. Were

managers to implement policies aimed at limiting the

spread of an aquatic invasive species by levying a launch-

ing fee, or requiring hull sanitation procedures at either at

risk or currently infested lakes, boaters may change their

behaviour. Changes in boater behaviours resulting from

management interventions could potentially alter the

structure of the human-mediated dispersal network. This,

as we have shown, will have consequences for our predic-

tions of spread. Previous work has employed RUMs to

incorporate these behavioural feedbacks (Macpherson,

Moore & Provencher 2008; Timar & Phaneuf 2009); how-

ever, in the light of our current results, it may be appro-

priate to include these behaviours directly in a GM

formulation.

While we have shown here that the interaction between

intra-patch dispersal connectivity and stochastic population

dynamics within patches interact to determine rates of pop-

ulation spread across a landscape, there will no doubt be

effects of other factors, such as spatial and temporal envi-

ronmental heterogeneity (Melbourne et al. 2007), biotic

interactions (Hunt & Behrensyamada 2003), as well as tem-

poral variation in the dispersal network structure itself

which should be considered in future studies.
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