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still unclear whether non-native and native plants' traits align similarly along environmental gradients, limiting
our ability to assess the impacts of future plant invasions. Using a Bayesian multilevel modelling framework, we
assess TERs for native and non-native woody and herbaceous plants across six broad habitat types in Central
Europe at a resolution of ¢. 130 km? and use them to project trait change under future environmental change

Trait-environment relationship scenarios until 2081-2100. We model TERs between three key plant traits (maximum height, Hyay; specific leaf
area, SLA; seed mass, SM) and individual environmental factors (7 climate variables and % urban land cover) and
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estimate trait change summed across all environmental effects. We also quantify the change in the average trait
difference between native and non-native plants. Our models depict multiple TERs, with important differences
attributed to biogeographical status and woodiness within and across habitat types. The overall magnitude of
trait change is projected to be greater for non-native than native taxa and to increase under more extreme
scenarios. Native woody plant assemblages may generally experience a future increase across all three traits,
whereas woody non-natives may decline in Hy,x and increase in SLA and SM. Herbaceous Hp,y is estimated to
increase and SLA to decrease in most habitats. The obtained trait projections highlight conditions of competitive
advantage of non-native plants over natives and vice versa and can serve as starting points for projecting future
changes in ecosystem functions and services.

1. Introduction

Economic globalisation and human-induced environmental change
over the last centuries have caused vast numbers of species to decline
(Diaz et al., 2019) and a smaller yet substantial number of species to
expand beyond their historical ranges (i.e., non-native and neonative
species; Essl et al., 2019; Seebens et al., 2017). As a result, previously
unique species assemblages around the world are increasingly becoming
impoverished, more alike, and less stable (Daru et al., 2021; Eichenberg
et al., 2021; Finderup Nielsen et al., 2019; Winter et al., 2009; Yang
et al., 2021), with severe, often irreversible, consequences for natural
ecosystems and humans (Guo et al., 2020; Naeem et al., 2012; Pysek
etal., 2020). In the face of biodiversity's highly threatened and uncertain
future (Thuiller et al., 2005, 2019), ensuring that the scientific knowl-
edge used to design biodiversity policies is easily updatable, synthesis-
able, and transferable across space and time is crucial. This challenge, on
the one hand, calls for approaches that generalise scientific outputs
beyond individual species and, on the other hand, requires embracing
the distinct ecological patterns displayed by different species groups (e.
g., native vs non-native; Liu et al., 2017).

Approaches focusing on species traits (i.e., any measurable charac-
teristic of a single organism; Violle et al., 2007) are increasingly put
forward as a way towards predictive ecology (McGill et al., 2006; Violle
et al., 2014) and have been actively employed to study the effects of
global environmental change (e.g., Madani et al., 2018; Myers-Smith
et al., 2019). The premise of these approaches is that traits mechanis-
tically link an organism's performance to its environment and can be
upscaled to understand and predict how the environment shapes species
assemblages and ecosystem functioning (Bjorkman et al., 2018; Dubuis
et al., 2013; Kiister et al., 2011; Lavorel and Garnier, 2002; Musavi et al.,
2016). Moreover, traits yield insights into the mechanisms underlying
non-native species' invasiveness (Drenovsky et al., 2012; Kiister et al.,
2008; Pysek and Richardson, 2008) and can help reveal differences in
the ecological roles and functions of native and non-native species
(Hulme and Bernard-Verdier, 2018a, 2018b). However, trait-based
studies on native species have asked different questions than those on
non-natives. In particular, trait-based research on native species focuses
on environmental filtering and adaptation, whereas trait comparisons
between natives and non-natives often neglect the importance of the
environmental context (e.g., Divisek et al., 2018; Mathakutha et al.,
2019; van Kleunen et al., 2010). Presently, only a few studies have
looked at how native and non-native traits shift along environmental
gradients, altogether offering insufficient knowledge for identifying the
circumstances under which non-natives functionally diverge from or
converge with natives (Gross et al., 2013; Hanz et al., 2022; Henn et al.,
2019; Knapp and Kiihn, 2012; Sandel and Low, 2019; Westerband et al.,
2020). Given the steadily increasing extent of biological invasions
worldwide (Seebens et al., 2017; Seebens et al., 2021), explicit consid-
eration of trait-environment relationships (TERs) in non-native species
is desperately needed for predicting biodiversity and ecosystem
functioning.

Despite extensive recent efforts to map TERs globally (mostly
focusing on native species, as noted above), these relationships appear
heterogeneous and weak (Anderegg, 2023), which questions their

usefulness for predictions. This discordance with ecological theory
suggesting strong TERs might be partly attributed to insufficient
consideration of distinct trait syndromes specific to different growth
forms and habitats. Notably, woody and herbaceous plants occupy
separate sections in the global spectrum of plant form and function (Diaz
et al., 2016), which highlights their unique adaptations to the envi-
ronment and, hence, divergent TERs (Simov4 et al., 2018). Additionally,
traits of woody species tend to be more strongly associated with climate
than those of herbaceous species (Simova et al., 2018). This suggests
that when all growth forms in a study area are jointly analysed, TERs are
likely to appear weak. Nevertheless, it is common for macroecological
analyses to pool trait data for woody and herbaceous species together (e.
g., Moles et al., 2009, 2014; Wright et al., 2005) or to focus only on
woody taxa (e.g., Simova et al., 2015; Swenson et al., 2012). Moreover,
the strength and direction of TERs may vary due to unique environ-
mental conditions in each habitat type. For example, community-
weighted specific leaf area shows the opposite relationship with the
mean annual temperature in European forest understories (negative
relationship; Maes et al., 2020) vs calcareous grasslands (positive rela-
tionship; Rosbakh et al., 2015). Yet, TERs have usually been quantified
either as pooled across habitats or for a specific habitat type per study (e.
g., open montane habitats, Dubuis et al., 2013; forests, Maes et al., 2020;
Wieczynski et al., 2019). For non-native species, habitat information has
been primarily incorporated to compare the levels of invasion across
broadly defined (Chytry et al., 2008) and selected narrowly defined
habitats (e.g., grasslands, Axmanovd et al., 2021; coastal dunes, Giulio
et al., 2020; forests, Wagner et al., 2017), whereas how traits of non-
native species arrange along environmental gradients within or across
habitats has not been explored. Altogether, this calls for explicitly
considering woodiness, habitat type, and biogeographical status (i.e.,
native vs non-native) in trait-based analyses.

This study uses comprehensive plant distribution and trait data for
Germany and the Czech Republic and a full Bayesian multilevel
modelling framework to assess future trait change based on a refined,
contextualised set of TERs. We hypothesise that (1) the relationships
between traits of plant assemblages and the environment are highly
contingent upon the habitat type and whether assemblages are made of
non-native (as opposed to native) and woody (as opposed to herbaceous)
taxa and, consequently, (2) the effect of future environmental change
will be pronounced to a varying extent in different types of plant as-
semblages and under different scenarios. We follow the ‘assemble first,
predict later’ approach (sensu Ferrier and Guisan, 2006), which entails
aggregating trait values at the assemblage level, modelling those ag-
gregates as functions of environmental variables, and using the fitted
models to project trait values under plausible future conditions. Such an
approach efficiently synthesises shared trait patterns across many spe-
cies while accounting for previously overlooked sources of variation in
TERs, namely biogeographical status (native vs non-native, with a
further split of non-natives into archaeophytes and neophytes; see 2.1.1.
Taxon-level data for definitions), woodiness and habitat type. More
precisely, we first quantify relationships of traits central to plant life
history (Diaz et al., 2016; Westoby, 1998) — maximum height, specific
leaf area, and seed mass — with climate and land use within woody and
herbaceous native and non-native plant assemblages. Based on the
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obtained TERs, we then determine the magnitude and direction of
plausible future change in mean trait values, which reflect the turnover
of taxa and associated functions. Trait change is projected under seven
combined climate and socio-economic scenarios (pairs of Representative
Concentration Pathways and four Shared Socio-Economic Pathways) for
Europe for 2081-2100.

2. Material and methods

Our study area comprises Germany and the Czech Republic. Both
countries have a temperate climate with marked regional differences
(DWD, 2017) and relatively homogeneous land cover composition
dominated by arable and forested land (EEA, 2021).

2.1. Data

2.1.1. Taxon-level data

We harmonised and collated data on plant taxon occurrences,
biogeographical status, habitat affinity, and traits for the entire flora of
the study area from multiple open data sources. We omitted aquatic (i.e.,
taxa with the Ellenberg moisture indicator value >9), holoparasitic, and
fully mycotrophic taxa.

2.1.1.1. Occurrence records. For Germany, we obtained gridded plant
taxon occurrence data from the FlorKart database (Datenbank FlorKart,
NetPhyD, and BfN, 2013) via the information online system FloraWeb
(www.floraweb.de; accessed 5 February 2022). For the Czech Republic,
we obtained gridded taxon presence data from the Pladias — Database of
the Czech Flora and Vegetation (www.pladias.cz; accessed 16 January
2022). From FlorKart, we excluded occurrences marked as cultivated,
erroneous, and doubtful and from Pladias, we removed records at the
genus level. We also excluded records of presently missing and extinct
taxa and taxa known from both countries but with data from only one
country. Because both databases are essentially compilations of regional
projects with different sampling intensities, we aggregated all data at the
resolution of the 10’ longitude x 6' latitude grid cells (c. 130 km? on
average; N = 3175) to achieve a more homogeneous sampling effort. We
also cropped the spatial grid to the combined borders of the study area
and excluded all grid cells with a land area < 117 km?, which corre-
sponded to the size of the smallest (northernmost) grid cell not truncated
by borders or coastlines. To further control for sampling bias, we
removed grid cells containing <83 (95 %) of the 87 benchmark taxa, i.e.,
taxa occurring in each grid with a probability >0.98 based on the Beals
smoothing method (Beals, 1984; Carmona and Partel, 2021; listed in
Appendix A). The final grid comprised 3031 cells.

2.1.1.2. Biogeographical status. We retrieved information on taxon
biogeographical status from the BiolFlor database (Kiihn et al., 2004)
and FloraWeb (www.floraweb.de) for Germany and from Pysek et al.
(2012) for the Czech Republic. For analyses, we considered only native,
established archaeophytes (i.e., non-native taxa introduced before the
discovery of the Americas in 1492; Kiihn et al., 2004) and established
neophytes (i.e., non-native taxa introduced after 1492), excluding ca-
sual (i.e., non-established) non-natives. Specifically, for taxa that were
native in one country and casual non-native in the other country, we
retained only records from where those taxa were native. For non-
natives spontaneously occurring in both countries but established in
only one country, we kept all known occurrences unless the number of
occupied grid cells in each country was 1. Although retaining occur-
rences of taxa that were considered casual in one of the countries meant
overestimating the naturalised secondary range size in some cases, more
importantly, it allowed us to ameliorate the differences in expert
judgement regarding the degree of taxon establishment within the study
area. We retained all records of taxa native to both counties and non-
native taxa with established populations in both countries unless they
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were known from a single grid cell. Finally, for consistency reasons, we
assigned a single, highest achieved degree of establishment to each
taxon, per the national treatment of taxa having several statuses in the
country.

2.1.1.3. Habitat affinity. To enable analyses at the habitat level, we
assigned each taxon to at least one of the following six broad habitat
types: forest, heaths and scrub, grassland, wetland, rock and scree, and
human-made. Information on taxon habitat affinity was collated from
multiple reference sources (namely, BiolFlor, Kiihn et al., 2004; Bun-
desamt fiir Naturschutz, 2017; EUNIS, Chytry et al., 2020; DAISIE, Roy
et al., 2020; Divisek et al., 2018; KORINA, www.korina.info, accessed 4
August 2021; Sadlo et al., 2007), which used different habitat classifi-
cation schemes. We grouped the habitat types in each data source into
the six habitat types based on the authors' expertise (see Table A.1 for
the habitat cross-walk) and merged all the data. To avoid reports of
sporadic occurrences, we only retained habitats listed in >1 source for
taxa represented in multiple sources.

2.1.1.4. Traits. We selected three traits for our analyses: (1) typical
maximum plant height (Hp,ax; measured in m), (2) seed mass (SM; g),
and (3) specific leaf area (SLA; mm? mg’l). These traits depict major
plant life strategies (Diaz et al., 2016; Westoby, 1998), correlate with
many other important traits (Moles et al., 2009; Wright et al., 2004), act
as both response and effect traits (Hanisch et al., 2020; Kiihn et al., 2021;
Pollock et al., 2012), and are well represented in open source trait da-
tabases (e.g., Kattge et al., 2020). For best possible taxon coverage, we
compiled trait data from multiple databases and online resources: LEDA
(Kleyer et al., 2008), TRY (Kattge et al., 2011, 2020, accessed 1 October
2019; see Appendix A for references within TRY), EcoFlora (Fitter and
Peat, 1994), Info Flora (www.infoflora.ch), iFlora (www.i-flora.com),
Kaplan et al. (2019), E-Vojtko et al. (2020), and World Species (worldsp
ecies.org). We included Hp,,x measurements on vegetative and genera-
tive organs, SM measurements on dried seeds, and SLA measurements on
sun and shade leaves and dry biomass. Where possible, we removed trait
measurements from biomes outside our study area (e.g., tundra).
Climbers were excluded from analyses of Hpax. When multiple SLA and
SM values were available per taxon, we averaged them using the geo-
metric mean (due to its lower sensitivity to extreme values compared to
other measures of central tendency) after accounting for possible out-
liers; for Hpyax, we calculated as the geometric mean of the Hpax values
provided in individual data sources. The information on woodiness was
obtained directly or inferred from life and growth form. Woody taxa
were considered perennials whose stems were either entirely lignified or
had a lignified base. Woody plants in grasslands, wetlands, and rock and
scree habitats were excluded from all analyses. We also removed woody
archaeophytes due to the low sample size (most archaeophytes in our
data were herbaceous) and low variation in trait values.

Our final dataset comprised 1812 native, 181 archaeophyte, and 331
neophyte taxa; Hy,x was available for 96 %, SLA for 74 %, and SM for 88
% of those taxa. Appendix A provides information on taxonomic name
standardisation.

2.1.2. Climate and land use data

2.1.2.1. Baseline data. We retrieved baseline data on 14 macroclimatic
variables from the 10’ x 10’ CRU 1961-1990 dataset (New et al., 2002).
The variables were total annual precipitation (TAP; mm), precipitation
of the driest and wettest quarters, precipitation of the driest month
(Pary), precipitation of the wettest month (Pye), precipitation season-
ality (coefficient of variation of monthly total precipitation, Pcy; %),
mean annual temperature (MAT; °C), mean and minimum temperature
of the coldest month, mean temperature of the warmest month,
maximum temperature of the warmest month (Ty,rm), mean tempera-
ture of the driest quarter (T4y), mean temperature of the wettest quarter
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(Twet), and temperature seasonality (coefficient of variation of monthly
average temperature; %). We rescaled all variables to the 10" x 6’ spatial
resolution by resampling original values onto a 0.5 x 0.5 grid using
bilinear interpolation and then averaging obtained downscaled values
within each 10’ x 6 grid cell. As a baseline for land use, we used Corine
Land Cover (CLC) data for the year 2000 (100 m x 100 m; CLC, 2020),
which we aggregated to the 10" x 6 spatial resolution. Additionally, we
determined which of the six habitat types were present in each grid cell
based on the Ecosystem types of Europe 2012 raster dataset (EEA, 2018).
Forests, grasslands, and human-made habitats were present in all 3031
grid cells, whereas heaths and scrub occurred in 2091, wetlands in 966,
and rock and scree habitats in 337 grid cells. All spatial data were pre-
pared with the R package raster (v.3.4-13; Hijmans, 2021).

2.1.2.2. Scenario projections. We obtained climate and land-use pro-
jections at 10’ x 10" spatial resolution for 2081-2100 from the IM-
PRESSIONS project (www.impressions-project.eu). The IMPRESSIONS
Integrated Assessment Platform (IAP2) includes three Representative
Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and four Euro-
pean Shared Socio-economic Pathways (Eur-SSP1, Eur-SSP3, Eur-SSP4,
and Eur-SSP5; Kok et al., 2019) and permits modelling individual and
joint impacts of climate and socio-economic change until 2081-2100.
Because the agreement between land use classes in CLC (chosen base-
line) and IAP2 was low for all land-use types except urban, we kept only
the percentage of urban land (Uy) for further analyses. We used pro-
jections for seven RCP-SSP scenario combinations, each based on three
dynamically downscaled CMIP5 climate models for each RCP (see
Table A.2 for more information on scenarios).

2.2. Data analyses

2.2.1. Data preparation

We first log;o-transformed all traits to reduce the skewness of their
distributions and the effect of extreme values. Then, separately for
woody and herbaceous native, neophyte, and archaeophyte taxa within
selected habitats, we averaged each trait at the grid-cell level, omitting
taxa with missing trait values. Thus, when all six habitat types were
present in a grid cell, we computed up to 24 mean values per trait per
grid cell. Trait per-cell means based on fewer than four taxa were heu-
ristically excluded from analyses. Next, we separately scaled trait means
of woody and herbaceous native, neophyte, and archaeophyte plant
assemblages at the habitat level to zero mean and unit variance. We did
so because we aimed to capture how taxon status, woodiness, and
habitat moderated the effects of climate and land use rather than to
quantify their direct effects on traits. Moreover, such scaling allowed us
to impose a single spatial autocorrelation structure across habitats and
thus quantify all effects within a single model. Scaled trait per-cell
means were used as response variables in statistical models.

To reduce the redundancy among the potential environmental pre-
dictor variables, we performed variable selection based on the variance
inflation factor (VIF) and Pearson's correlation coefficient (r; shown in
Fig. A.2) using the R package usdm (v.1.1-18; Naimi et al., 2014). Ul-
timately, we retained eight predictor variables: Pary, Pwet, Pcv, Tcolds
Twarm> Tdry> Twet, and Uy, Before analyses, we scaled these variables to
zero mean and unit variance to aid model parametrisation and inter-
pretation. The per-cell number of taxa (Ni.x,; see 2.2.2. Statistical
models) was scaled similarly to traits.

2.2.2. Statistical models

We assessed TERs using linear multilevel models. All models were
parameterised within a full Bayesian framework using the R package
brms (v.2.14.4; Biirkner, 2017). We modelled individual-trait per-cell
mean values as the function of climatic variables and Uy, (continuous
predictors) and taxon biogeographical status, woodiness, and habitat
(categorical predictors). More specifically, we developed a suite of

Science of the Total Environment 907 (2024) 167954

slope-only models, in which we included a single continuous predictor
and its two- and three-way interactions with biogeographical status and
woodiness that were allowed to vary by habitat. Such models allowed us
(1) to quantify the extent to which the effects of climate and urbanisa-
tion differ between native and non-native taxa, herbaceous and woody
taxa, as well as across different habitats, and (2) to incorporate this
potential context-dependency into projections of future spatial trait
distributions. To account for residual spatial autocorrelation, we
included conditional autocorrelation structure (CAR) with grid cell
identifier as a grouping factor in all our models. In all our models, we
also controlled for Ny, by including this metric as another predictor
variable because, in some cases, average trait values correlated with
Niaxa- In particular, this correlation was negative for Hy,,x, suggesting
that taxon-richer grid cells had, on average, a higher proportion of
shorter taxa. Such a pattern may reflect sampling effort (e.g., smaller
plants are more likely to remain undetected; Chen et al., 2013), be a
genuine ecological phenomenon (Aarssen et al., 2006), or both. In either
case, we chose to control for Ni.xa, as otherwise, its effect could be
incorrectly attributed to environmental predictors. A model for each
environmental predictor can be written as follows:

y; ~ Bipjeiwi + B eisi + B eiwisi + B mwis; + € + i
B ~ N(pew: 02,)

B ~ N, 02)

B ~ N (Hews: O)

B ~ N(Hp: One)

€~ N<O7 c§>
7z ~ N(0,%)

where y; is the trait per-cell mean value for the i observation (i = 1,...,
Nobs), calculated for each combination of habitat type, woodiness, and
biogeographical status; e; is the environmental predictor; w; is woodi-
ness; s; is biogeographical status; n; is the number of taxa; ﬁfw, ﬂfs, ﬂje‘”s,
pi™* are slopes for the interactions between variables indicated in the
superscript in the jth habitat type (j = 1, ..., Nhabitats); ﬁf‘ is the slope for
the interaction between e; and s; in the jth habitat type; i is the slope
for the interaction between e;, w; and s; in the jth habitat type; ¢;is the
residual effect of the i™ observation; z is the residual spatial random
error for the k™ grid cell (k = 1, ..., Neells); Hew> Hes> Hewss Hews are the
overall slopes for the interactions specified in the subscript; 62, 62, 62,
are the habitat-level variances for the slopes; 5§ is the residual
variance; and ¥ is the covariance matrix, as defined in a conditional
autoregressive model. We chose to fit separate models for each envi-
ronmental predictor because of the high complexity of a full model and
possible collinearity due to many interaction terms with the same cat-
egorical predictors. To prevent the sampler from considering highly
implausible values, we used zero-centred weakly informative priors
chosen based on prior predictive checks (Wesner and Pomeranz, 2021).

2
Onws

2.2.3. Model predictive performance

We evaluated the predictive performance using exact k-fold cross-
validation. The folds were determined as spatial blocks to avoid po-
tential overestimation of predictive performance (Roberts et al., 2017).
For that, we overlaid a 3 x 3 spatial-block grid onto the grid of the study
area (see Fig. A.1) using the R package blockCV (v2.1.4; Valavi et al.,
2019). This resulted in 8 spatial blocks, two of which we merged to
achieve a more even distribution of grid cells across folds. We then
assigned all data points within a grid cell to a specific fold and performed
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7-fold cross-validation with the R package brms (Biirkner, 2017). As the
measures of predictive model performance, we calculated the k-fold
information criterion (kfoldIC) and the root mean square error based on
cross-validated predictions (RSME; both statistics are reported in
Table A.3).

2.2.4. Future projections

We obtained projections of per-cell mean values of each trait under
baseline and scenario conditions. We set the scaled Ny, to O to generate
all projections assuming equal taxon numbers across the study area.
Projections were computed as the weighted average of posterior pre-
dictive distributions from the eight single-environmental-predictor
models using Bayesian stacking of predictive distributions (Yao et al.,
2018). We then calculated the projected per-cell change in each trait
under each scenario as the difference between the medians of the pro-
jected future scenario-based and baseline posterior predictive distribu-
tions. To enable comparison across biogeographical statuses, we
rescaled trait change values of archaeophytes and neophytes to the
standard deviations (SD) of a baseline trait distribution for native taxa of
respective woodiness and habitat (see Table A.4 for log;-transformed
native trait values equalling 1 SD for each woodiness and habitat com-
bination). We calculated the Euclidean distance between the projected
per-cell posterior means of the three traits on the baseline and scenario
data to assess the overall magnitude of trait change.
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2.2.5. Importance of environmental predictors

To summarise the effects of individual environmental predictors on
all three traits and to visualise them in the multivariate space, we per-
formed multiple redundancy analyses (RDA) using the R package vegan
(v.2.5-7; Oksanen et al., 2020). We chose RDA as a way to report TERs
instead of reporting marginal effects from individual models because
this allowed us to synthesise the importance of environmental predictors
as reflected in projections (i.e., accounting for weighting applied to
individual-model posterior predictive distributions; see 2.2.4. Future
projections). For each RDA, we used a separate dataset containing the
projected trait change (i.e., the difference between scenario and baseline
projections) and the change in environmental predictors (i.e., the dif-
ference between scenario and baseline values) across all the scenarios
corresponding to a unique combination of biogeographical status,
woodiness, and habitat. As the measure of individual environmental
predictor contribution to trait change, we calculated the length of the
vectors with the initial point at (0,0) and the terminal point at the scores
of the first two RDA axes. The lengths of the vectors reflected the
weighted effect sizes of the predictors used to calculate posterior pre-
dictive distributions for all traits. The angles among those vectors and
individual traits in the two-dimensional RDA space reflected TERs.

All statistical analyses and visualisations were performed in the R
environment v4.1.0 (R Core Team, 2021).
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Fig. 1. The projected absolute overall per-cell change across the three traits, plant maximum height (Hp,x), specific leaf area (SLA), and seed mass (SM), at the
habitat (a), biogeographical status (b), and woodiness (c) levels under the least extreme combined climate and socio-economic scenario (RCP2.6 Eur-SSP1, all climate
models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081-2100. The overall trait change was calculated as a Euclidean distance between the projected
per-cell posterior means of the three traits on the baseline and scenario data. Boxes show 25 %, 50 %, and 75 % quartiles, and whiskers show 95 % credible intervals.
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3. Results
3.1. Overview of trait change projections

Overall, we observed high variability (i.e., the spread across poste-
rior distributions) and uncertainty (i.e., the spread within posterior
distributions) in the magnitude and direction of the projected per-cell
change in Hp,x, SLA, and SM under environmental change scenarios.
The variation in the projected trait change was pronounced at all three
grouping levels considered in the analyses, i.e., taxon biogeographical
status, woodiness, and habitat type, and increased with the degree of
environmental change (the least extreme scenario, RCP2.6 Eur-SSP1 and
the most extreme scenario, RCP8.5 Eur-SSP5 are shown Figs. 1-4; other
scenarios in B.1-B.6, B.13). Likewise, uncertainty associated with indi-
vidual per-cell projections varied across the grouping levels and was
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generally higher under more extreme scenarios, being driven much
more by climate change than urbanisation (Figs. B.7-B.12). The likeli-
hood of trait change (measured as the proportion of grid cells with
projected posterior credible intervals excluding zero) was lowest under
RCP4.5 and RCP8.5 for woody native SLA in human-made habitats and
archaeophyte SM in human-made habitats and heaths and scrub (results
not shown).

Below, we focus on the posterior means of the projected per-cell
posterior distributions, which reflect the average trends in our pro-
jections but do not embrace the uncertainty, for the least and most
extreme scenarios to illustrate the maximum future option space for
2081-2100. Results for other scenarios are presented in Appendix B.
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Fig. 2. The projected per-cell (10’ x 10') change in the logjo-transformed maximum plant height (Hpya.x) under the least extreme combined climate and socio-
economic scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081-2100, for herbaceous (a, ¢) and woody
(b, d) taxa in six broad habitat types. The trait change here is the posterior means of per-cell model predictions. The violin plots depict the distributions of predicted
values across the study area and climate models (Table S1), and the boxplots provide summary statistics of those distributions (boxes show 25 %, 50 %, and 75 %
quartiles, and whiskers give roughly 95 % credible intervals). For each habitat by woodiness combination, the trait change is presented in standard deviations (SD) of
the baseline trait distribution of native taxa for that combination. For example, the overall change of 0.60 in Hp,ax Of forest herbaceous neophytes under the RCP2.6
Eur-SSP1 scenario indicates that the average H,,x of this assemblage is projected to increase by 0.60 SD, relative to the current Hy,,y distribution of natives. Note the
different scaling of Y-axes. Figs. B.1-2 (projected per-cell posterior means) and B.7-8 (projected per-cell posterior standard deviations) illustrate projections under

other scenarios.
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Fig. 3. The projected per-cell (10’ x 10') change in the log;o-transformed specific leaf area (SLA) under the least extreme combined climate and socio-economic
scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for herbaceous (a, ¢) and woody (b, d) taxa in six broad
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narios. Other details are as in Fig. 2.

3.2. Projected trait change

For all traits considered simultaneously, the magnitude of trait
change was projected to be, on average, higher in forests, heaths and
scrub, and grasslands than in other habitat types (Fig. 1a), for non-
natives rather than natives (Fig. 1b) and for woody rather than herba-
ceous plants (Fig. 1c). The direction of projected change in individual
traits often diverged for herbaceous vs woody plants and natives vs
neophytes (Fig. B.13).

Across all scenarios, the mean trend for Hy,.x change in herbaceous
plant assemblages within tree- and shrub-dominated habitats was pos-
itive throughout the study area, being more pronounced for archae-
ophytes and neophytes than for natives (Figs. 2a,c, B.1a-f). In other
habitats, the projected change of Hp,x was more heterogeneous spatially
and across biogeographical statuses. Notably, in grasslands and rock and
scree habitats, herbaceous native Hy,,x showed very little to no change,
whereas herbaceous neophytes were projected to increase in Hpay,
especially in grasslands (Figs. 2a,c, B.1g-1, B.14a,c). As for woody plant
assemblages, only Hp,qx of natives demonstrated a predominantly posi-
tive trend, with the highest increase projected for human-made habitats
under RCP8.5 SSP5; meanwhile, Hyx of neophytes tended to mainly
decrease (Figs. 2b,d, B.2, B.14b,d).

Like Hpay, the projected change of SLA varied with biogeographical

status, woodiness, and habitat (Figs. 3, B.3-4). Herbaceous SLA was
projected to decrease, with some exceptions (e.g., native SLA in wet-
lands; Figs. 3a,c, B.3). The degree of this decrease tended to be greater
for natives than neophytes (Fig. B.15a,c). In contrast, woody SLA can be
expected to increase for both natives and neophytes, with the latter
increasing more than natives in forests and heaths and scrub (Figs. 3b,d,
B.4, B.15b,d).

The overall magnitude of SM change was comparable to that of Hpax
and SLA. In forests and heaths and scrub, woody native and non-native
SM was projected to only increase, whereas, in human-made habitats,
woody neophyte SM showed a decline (Figs. 4b,d, B.6a—e, B.16b,d). The
direction of projected change in herbaceous SM was less uniform and
varied spatially as well as with habitat and biogeographical status
(Figs. 4a,c, B.5, B.16a,c). Particularly, SM of archaeophytes tended to
respond opposingly to that of natives and neophytes and was more likely
to decrease in most habitats.

3.3. Importance of environmental predictors

Across all three traits, Tyam and Teoq captured the highest amount of
variation in the projected trait change, followed by Pcy, Pqry, and Pyes;
the contributions of Tgry, Twer, and Uy, were considerably smaller
(Fig. B.17). The role of individual environmental predictors generally
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Fig. 4. The projected per-cell (10’ x 10') change in the log;o-transformed plant seed mass (SM) under the least extreme combined climate and socio-economic
scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081-2100, for herbaceous (a, ¢) and woody (b, d) taxa
in six broad habitat types. Figs. B.5-6 (projected per-cell posterior means) and B.12-13 (projected per-cell posterior standard deviations) illustrate projections under

other scenarios. Other details are as in Fig. 2.

varied with biogeographical status, habitat, and woodiness (Fig. 5).
Nonetheless, some predictors showed highly consistent associations
with the projected trait change (as per respective underlying TERs). For
example, a projected increase in herbaceous SM correlated mostly
positively with Pcy and negatively with P4y; a negative relationship
was, however, observed for herbaceous neophyte SM in the forest,
heaths and scrub, and rock and scree habitats. Similarly, the increase in
Teold contributed positively to the SM increase in woody plant assem-
blages, except for neophytes in human-made habitats. Tyarm and Teold
exhibited a strong positive relationship with herbaceous and woody
Hpax, although the relationship was negative for human-made habitats
and woody neophytes. In some cases, the effect of temperature on Hpyax
was not as pronounced as that of Pyt and Pcy. Mainly, native Hpax in
grasslands and human-made habitats was strongly positively affected by
Pyet and Pcy, whereas in rock and scree habitats, native Hp,x was
negatively associated with those two predictors. With few exceptions,
herbaceous SLA correlated negatively with Twarm, Tcold, and Pgry.
Furthermore, native herbaceous SLA positively correlated with Py, in
all habitats besides wetlands, whereas non-native herbaceous SLA
consistently showed a negative relationship with Py, Unlike

herbaceous SLA, native and neophyte woody SLA was strongly posi-
tively related to Twarm, Tcold, and Pgry (Fig. 5).

4. Discussion

In this study, we quantified broad-scale relationships of three traits
central to plant life history — maximum height (Hpay), specific leaf area
(SLA), and seed mass (SM) — with eight selected environmental variables
within Central Europe. We then used the obtained relationships to
project trait change under seven plausible scenarios of future environ-
mental change for 2081-2100. We modelled the variation in TERs
associated with plant woodiness, biogeographical status, and habitat
type to account for unique adaptations of different types of plant as-
semblages to the environment, hence making particular aspects of
mechanistic context-dependence in TERs any resulting trait projections
explicit (Catford et al., 2021). We showed that the three traits were
projected both to increase and decrease to varying degrees across and —
in many cases — within habitats and that the overall magnitude of this
change was expected to be, on average, higher for non-native than
native taxa (Fig. 1b) and under more extreme scenarios (Figs. B.1-6).
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Fig. 5. The relative contribution of individual environmental predictors to the projected change in herbaceous and woody plant maximum height (Hy,ay), specific leaf
area (SLA), and seed mass (SM), calculated using redundancy analysis (RDA). A separate RDA was performed on each subset (N = 24) of per-cell projections across all
the scenarios, representing a unique combination of taxon biogeographical status, habitat, and woodiness. Shown are the RDA scores of the predictors (as vectors)
and traits (as triangles, centred at seed mass) for the first two RDA axes (RDA1, RDA2). RDA1 and RDA2 captured 91-100 % of the variation in the data. The lengths
of vectors are proportional to the magnitude of the effects of respective predictors on the three traits simultaneously. The overall contributions of each predictor,
calculated as the combined length of their respective vectors across all the RDA spaces, are shown in Fig. B.17. The angles among the vectors and triangles reflect
their correlation, which equals the cosine of the angle. For example, most assemblages' angle between SM and precipitation seasonality is acute, indicating their

strong positive correlation.
<
<

Moreover, we found that in the future, distinct environmental responses
of native and non-native plants may lead to even higher trait values than
currently observed for non-natives (e.g., herbaceous Hp,x in most hab-
itats) as well as to a reduced average native-non-native trait difference
(e.g., woody Hpayx; Figs. B.14-16), which may lead to altered competi-
tive hierarchies among natives and non-natives (Kunstler et al., 2016).

4.1. Projected overall trait change across habitat types

The overall magnitude of trait change was projected to be higher in
forests, heaths and scrub, and grassland habitats than in rock and scree,
wetland, and human-made habitats (Fig. 1a). This result may reflect the
low sensitivity of the latter to environmental change. In particular, rock
and scree habitats are highly stable systems defined by environmental
stress more than by macroclimate. By contrast, wetlands are strongly
shaped by local hydrology and show much less species turnover along
macroclimatic gradients than other habitats. Moreover, the spatial res-
olution of our analyses might have been too coarse to capture finer
environmental gradients that traits of wetland and rock and scree plant
assemblages respond to. Human-made habitats typically are more
environmentally homogeneous and contain plants preadapted to
disturbance and warm and dry conditions (Kalusova et al., 2017).
Therefore, it is expected for human-made habitats to have plant taxa
with relatively large SLA and small SM, irrespective of macroclimate.
Overall, the observed high variation across habitats proved the impor-
tance of incorporating habitat information into macroecological ana-
lyses, as failing to do so would have blurred TERs.

4.2. Projected change in plant maximum height and its drivers

The hierarchy of environmental drivers shaping the projected change
in Hpyax was highly habitat-specific, and the trait change patterns found
across non-native plant assemblages often deviated from those in native
assemblages. Specifically, temperature variables' positive effects drove
the projected change of Hp,ax in forests and heaths and scrub, whereas, in
other habitats, precipitation variables' positive contributions prevailed
(Fig. 5). Previous studies have similarly detected a robust positive as-
sociation between temperature and plant height both across and within
habitat types at the continental scale (e.g., Simova et al., 2018; forest
understories, Padullés Cubino et al., 2021) and the regional scale (e.g.,
forest understories, Maes et al., 2020; mountain grasslands and rock and
scree, Dubuis et al., 2013). Meanwhile, Moles et al. (2009) reported that
the best predictor of plant height globally was the precipitation of the
wettest month, and our results for grasslands and rock and scree habitats
supported this. Notably, while the TERs for native woody assemblages
add to the current consensus on the effect of climate on woody plant
height (Simova et al., 2018; Swenson et al., 2012), the results for neo-
phytes suggest that woody non-natives may be preadapted to a different
subgradient of the global climatic gradient — in particular, to hotter and
drier conditions — where the opposite, negative relationship with tem-
perature can occur (Madani et al., 2018; Moles, 2018). A negative
relationship between Hp,,x of invasive neophytes and T.,q was also
shown by Milanovic et al. (2020), although the mechanisms behind this
phenomenon remain unclear and require further exploration.

10

4.3. Projected change in specific leaf area and its drivers

Contrary to several previous studies (Dubuis et al., 2013; Rosbakh
et al., 2015; Simova et al., 2018), herbaceous native and neophyte SLA
correlated primarily negatively with temperature, and only herbaceous
archaeophyte SLA tended to show the opposite. Speculatively, we can
assume that the patterns in the SLA-environment relationships were
partially confounded with unaccounted environmental drivers, such as
continentality and soil fertility. Like temperature, another pronounced
driver of herbaceous SLA change, Pqy, also negatively affected SLA
across all herbaceous assemblages. In contrast, Pyet positively and
negatively influenced herbaceous native and neophyte SLA, respectively
(Fig. 5). A negative shift of native SLA along the P4,y gradient appears in
disagreement with a previously documented negative effect of drought
on SLA (Wellstein et al., 2017; Wright et al., 2005). This pattern could be
attributed to the occurrence of many plant taxa with evergreen, low-SLA
leaves in the mountains in Central Europe, where precipitation is high
(Chytry et al., 2021). In contrast to herbaceous SLA, yet in alignment
with previous reports (Simova et al., 2018; Swenson et al., 2012), SLA
across all woody assemblages exhibited a strong positive relationship
with temperature as well as Pqy. Environmental change should, there-
fore, lead to an increase in woody native SLA and even more so in woody
neophyte SLA (Figs. 3b,d, 5, B.4), which may allow non-natives to gain a
further advantage over natives (Pysek and Richardson, 2008).

Reflecting the combined effect of all the predictors, our projections
mainly forecasted a decrease in herbaceous SLA; an increase throughout
the study area was projected only for native herbaceous SLA in wetlands
and archaeophyte SLA in forests, and a partial increase in SLA was
projected for archaeophytes in wetlands and human-made habitats and
herbaceous neophytes in grasslands and human-made habitats (Figs. 3,
B.3). Despite a general projected shift towards more conservative
resource-use strategies (i.e., lower SLA), our projections suggest that
herbaceous neophyte SLA may be affected less than SLA of herbaceous
natives (Figs. B.3, B.15). These changes may lead to a further increase in
the SLA imbalance between native and non-native taxa towards the
latter in the region (Divisek et al., 2018), possibly resulting in an even
higher proportion of invasive non-natives (Pysek and Richardson,
2008). The alteration of the SLA composition will undoubtedly affect
ecosystem functioning. For example, an overall decrease of SLA in
grasslands may lead to higher root biomass (Klimesova et al., 2021) and
total soil carbon (Garnier et al., 2004), as well as reduced nutrient
cycling (Lavorel et al., 2011) and productivity (Brun et al., 2022).

4.4. Projected change in seed mass and its drivers

Our results showed that overall, drier, less stable climates might, on
average, contribute to an increase in herbaceous SM but a decrease in
woody SM (Fig. 5). This finding is congruent with previous studies
(Baker, 1972; Dubuis et al., 2013; Simova et al., 2015; Swenson et al.,
2012; Vandelook et al., 2018) and at least partially explains the het-
erogeneous relationships of SM and precipitation in the literature (dis-
cussed in Moles, 2018). Notably, while this pattern holds for natives and
archaeophytes across all habitats, neophytes often deviate from it.
Specifically, we observed the opposite effect of the precipitation amount
and seasonality on herbaceous neophyte SM in the tree- and shrub-
dominated as well as rock and scree habitats and on woody neophyte
SM in human-made habitats (Figs. 5, B.13). Such divergence from native
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herbaceous SM may be confounded with the turnover in the growth
form, i.e., the proportional increase of small-seeded, short-lived neo-
phytes in drier areas (Sandel et al., 2010). Additionally, the contrasting
responses of native and non-native plant assemblages to precipitation
may be due to the differences in the duration of their environmental
exposure and the fact that many non-natives are still actively spreading.
For archaeophytes, the positive effect of precipitation is likely to be
overwhelmed by the negative impact of higher temperatures, leading to
an overall decrease in SM (Figs. 4, B.5). Interestingly, for woody SM, the
overall effect of precipitation was not as pronounced as that of tem-
perature. Notably, our results revealed a strong positive association of
woody SM with Tyarm and Teoq (Fig. 5), which drove the projected in-
crease in woody SM (Figs. 4b,d, B.6). This finding is in line with previous
studies which also documented a strong positive effect of temperature
on SM of woody plants (Moles et al., 2014; Simova et al., 2015, 2018;
Swenson et al., 2012) and highlighted that herbaceous SM is less sen-
sitive to temperature than woody SM (Simova et al., 2018).

4.5. Differences between native and non-native taxa

The observed differences in TERs and resulting trait change pro-
jections between native and non-native plant assemblages indicate that
biogeographical status is pivotal in species performance and community
assembly along environmental gradients. The effect of biogeographical
status may reflect the eco-evolutionary novelty of non-natives (Heger
et al., 2019; Saul et al., 2013) or their pre-adaptation to specific con-
ditions (Maron et al., 2004). For example, non-native species often
originate from more nitrogen-rich habitats (Dostal et al., 2013) and,
therefore, are typically characterised by high SLA. As we have shown, in
the long run, the differential response of native and non-native (espe-
cially neophyte) species to the change in environmental factors might
lead to even more substantial differences in their trait compositions than
today (Figs. B.14-16). These differences suggest that ecosystem func-
tions provided by future neophyte assemblages may not be redundant to
those currently offered by natives. On the contrary, functions presently
provided by natives may be replaced with different functions supplied
by neophytes, thus leading to an increase rather than buffering of
functional turnover during global change.

4.6. Conclusions

This study assessed how plant trait values might shift at the macro-
scale under future environmental change until 2081-2100. Our results
depicted substantial but frequently neglected contingency of TERs upon
plant woodiness, biogeographical status, and habitat type, thereby
explaining some of the existing idiosyncrasies within the literature and
producing more informative and refined TERs and projections of future
trait changes compared to previous studies. The obtained projections
provide an insightful perspective on the conditions under which non-
native plants may prevail over natives and vice versa and can serve as
starting points for exploring changes in ecosystem functions and services
in a rapidly changing world. We recommend routinely incorporating
information on habitat, growth form, and biogeographical status when
making any inference about plant traits' present or future variation
along environmental gradients and the impacts of this variation on
ecological processes.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.167954.
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