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• Trait distributions along ecological gra
dients allow scenario projections for 
traits. 

• Biogeographical status, woodiness, and 
habitat shape future change in plant 
traits. 

• Future native woody assemblages in
crease in height, specific leaf area and 
seed mass. 

• Herbaceous height increases and spe
cific leaf area decreases in most habitats. 

• Greater overall magnitude of trait 
change in non-native than native plant 
assemblages.  
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A B S T R A C T   

Many plant traits covary with environmental gradients, reflecting shifts in adaptive strategies and thus informing 
about potential consequences of future environmental change for vegetation and ecosystem functioning. Yet, the 
evidence of trait–environment relationships (TERs) remains too heterogeneous for reliable predictions, partially 
due to insufficient consideration of trait syndromes specific to certain growth forms and habitats. Moreover, it is 
still unclear whether non-native and native plants' traits align similarly along environmental gradients, limiting 
our ability to assess the impacts of future plant invasions. Using a Bayesian multilevel modelling framework, we 
assess TERs for native and non-native woody and herbaceous plants across six broad habitat types in Central 
Europe at a resolution of c. 130 km2 and use them to project trait change under future environmental change 
scenarios until 2081–2100. We model TERs between three key plant traits (maximum height, Hmax; specific leaf 
area, SLA; seed mass, SM) and individual environmental factors (7 climate variables and % urban land cover) and 
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estimate trait change summed across all environmental effects. We also quantify the change in the average trait 
difference between native and non-native plants. Our models depict multiple TERs, with important differences 
attributed to biogeographical status and woodiness within and across habitat types. The overall magnitude of 
trait change is projected to be greater for non-native than native taxa and to increase under more extreme 
scenarios. Native woody plant assemblages may generally experience a future increase across all three traits, 
whereas woody non-natives may decline in Hmax and increase in SLA and SM. Herbaceous Hmax is estimated to 
increase and SLA to decrease in most habitats. The obtained trait projections highlight conditions of competitive 
advantage of non-native plants over natives and vice versa and can serve as starting points for projecting future 
changes in ecosystem functions and services.   

1. Introduction 

Economic globalisation and human-induced environmental change 
over the last centuries have caused vast numbers of species to decline 
(Díaz et al., 2019) and a smaller yet substantial number of species to 
expand beyond their historical ranges (i.e., non-native and neonative 
species; Essl et al., 2019; Seebens et al., 2017). As a result, previously 
unique species assemblages around the world are increasingly becoming 
impoverished, more alike, and less stable (Daru et al., 2021; Eichenberg 
et al., 2021; Finderup Nielsen et al., 2019; Winter et al., 2009; Yang 
et al., 2021), with severe, often irreversible, consequences for natural 
ecosystems and humans (Guo et al., 2020; Naeem et al., 2012; Pyšek 
et al., 2020). In the face of biodiversity's highly threatened and uncertain 
future (Thuiller et al., 2005, 2019), ensuring that the scientific knowl
edge used to design biodiversity policies is easily updatable, synthesis
able, and transferable across space and time is crucial. This challenge, on 
the one hand, calls for approaches that generalise scientific outputs 
beyond individual species and, on the other hand, requires embracing 
the distinct ecological patterns displayed by different species groups (e. 
g., native vs non-native; Liu et al., 2017). 

Approaches focusing on species traits (i.e., any measurable charac
teristic of a single organism; Violle et al., 2007) are increasingly put 
forward as a way towards predictive ecology (McGill et al., 2006; Violle 
et al., 2014) and have been actively employed to study the effects of 
global environmental change (e.g., Madani et al., 2018; Myers-Smith 
et al., 2019). The premise of these approaches is that traits mechanis
tically link an organism's performance to its environment and can be 
upscaled to understand and predict how the environment shapes species 
assemblages and ecosystem functioning (Bjorkman et al., 2018; Dubuis 
et al., 2013; Küster et al., 2011; Lavorel and Garnier, 2002; Musavi et al., 
2016). Moreover, traits yield insights into the mechanisms underlying 
non-native species' invasiveness (Drenovsky et al., 2012; Küster et al., 
2008; Pyšek and Richardson, 2008) and can help reveal differences in 
the ecological roles and functions of native and non-native species 
(Hulme and Bernard-Verdier, 2018a, 2018b). However, trait-based 
studies on native species have asked different questions than those on 
non-natives. In particular, trait-based research on native species focuses 
on environmental filtering and adaptation, whereas trait comparisons 
between natives and non-natives often neglect the importance of the 
environmental context (e.g., Diví̌sek et al., 2018; Mathakutha et al., 
2019; van Kleunen et al., 2010). Presently, only a few studies have 
looked at how native and non-native traits shift along environmental 
gradients, altogether offering insufficient knowledge for identifying the 
circumstances under which non-natives functionally diverge from or 
converge with natives (Gross et al., 2013; Hanz et al., 2022; Henn et al., 
2019; Knapp and Kühn, 2012; Sandel and Low, 2019; Westerband et al., 
2020). Given the steadily increasing extent of biological invasions 
worldwide (Seebens et al., 2017; Seebens et al., 2021), explicit consid
eration of trait–environment relationships (TERs) in non-native species 
is desperately needed for predicting biodiversity and ecosystem 
functioning. 

Despite extensive recent efforts to map TERs globally (mostly 
focusing on native species, as noted above), these relationships appear 
heterogeneous and weak (Anderegg, 2023), which questions their 

usefulness for predictions. This discordance with ecological theory 
suggesting strong TERs might be partly attributed to insufficient 
consideration of distinct trait syndromes specific to different growth 
forms and habitats. Notably, woody and herbaceous plants occupy 
separate sections in the global spectrum of plant form and function (Díaz 
et al., 2016), which highlights their unique adaptations to the envi
ronment and, hence, divergent TERs (Šímová et al., 2018). Additionally, 
traits of woody species tend to be more strongly associated with climate 
than those of herbaceous species (Šímová et al., 2018). This suggests 
that when all growth forms in a study area are jointly analysed, TERs are 
likely to appear weak. Nevertheless, it is common for macroecological 
analyses to pool trait data for woody and herbaceous species together (e. 
g., Moles et al., 2009, 2014; Wright et al., 2005) or to focus only on 
woody taxa (e.g., Šímová et al., 2015; Swenson et al., 2012). Moreover, 
the strength and direction of TERs may vary due to unique environ
mental conditions in each habitat type. For example, community- 
weighted specific leaf area shows the opposite relationship with the 
mean annual temperature in European forest understories (negative 
relationship; Maes et al., 2020) vs calcareous grasslands (positive rela
tionship; Rosbakh et al., 2015). Yet, TERs have usually been quantified 
either as pooled across habitats or for a specific habitat type per study (e. 
g., open montane habitats, Dubuis et al., 2013; forests, Maes et al., 2020; 
Wieczynski et al., 2019). For non-native species, habitat information has 
been primarily incorporated to compare the levels of invasion across 
broadly defined (Chytrý et al., 2008) and selected narrowly defined 
habitats (e.g., grasslands, Axmanová et al., 2021; coastal dunes, Giulio 
et al., 2020; forests, Wagner et al., 2017), whereas how traits of non- 
native species arrange along environmental gradients within or across 
habitats has not been explored. Altogether, this calls for explicitly 
considering woodiness, habitat type, and biogeographical status (i.e., 
native vs non-native) in trait-based analyses. 

This study uses comprehensive plant distribution and trait data for 
Germany and the Czech Republic and a full Bayesian multilevel 
modelling framework to assess future trait change based on a refined, 
contextualised set of TERs. We hypothesise that (1) the relationships 
between traits of plant assemblages and the environment are highly 
contingent upon the habitat type and whether assemblages are made of 
non-native (as opposed to native) and woody (as opposed to herbaceous) 
taxa and, consequently, (2) the effect of future environmental change 
will be pronounced to a varying extent in different types of plant as
semblages and under different scenarios. We follow the ‘assemble first, 
predict later’ approach (sensu Ferrier and Guisan, 2006), which entails 
aggregating trait values at the assemblage level, modelling those ag
gregates as functions of environmental variables, and using the fitted 
models to project trait values under plausible future conditions. Such an 
approach efficiently synthesises shared trait patterns across many spe
cies while accounting for previously overlooked sources of variation in 
TERs, namely biogeographical status (native vs non-native, with a 
further split of non-natives into archaeophytes and neophytes; see 2.1.1. 
Taxon-level data for definitions), woodiness and habitat type. More 
precisely, we first quantify relationships of traits central to plant life 
history (Díaz et al., 2016; Westoby, 1998) – maximum height, specific 
leaf area, and seed mass – with climate and land use within woody and 
herbaceous native and non-native plant assemblages. Based on the 
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obtained TERs, we then determine the magnitude and direction of 
plausible future change in mean trait values, which reflect the turnover 
of taxa and associated functions. Trait change is projected under seven 
combined climate and socio-economic scenarios (pairs of Representative 
Concentration Pathways and four Shared Socio-Economic Pathways) for 
Europe for 2081–2100. 

2. Material and methods 

Our study area comprises Germany and the Czech Republic. Both 
countries have a temperate climate with marked regional differences 
(DWD, 2017) and relatively homogeneous land cover composition 
dominated by arable and forested land (EEA, 2021). 

2.1. Data 

2.1.1. Taxon-level data 
We harmonised and collated data on plant taxon occurrences, 

biogeographical status, habitat affinity, and traits for the entire flora of 
the study area from multiple open data sources. We omitted aquatic (i.e., 
taxa with the Ellenberg moisture indicator value >9), holoparasitic, and 
fully mycotrophic taxa. 

2.1.1.1. Occurrence records. For Germany, we obtained gridded plant 
taxon occurrence data from the FlorKart database (Datenbank FlorKart, 
NetPhyD, and BfN, 2013) via the information online system FloraWeb 
(www.floraweb.de; accessed 5 February 2022). For the Czech Republic, 
we obtained gridded taxon presence data from the Pladias – Database of 
the Czech Flora and Vegetation (www.pladias.cz; accessed 16 January 
2022). From FlorKart, we excluded occurrences marked as cultivated, 
erroneous, and doubtful and from Pladias, we removed records at the 
genus level. We also excluded records of presently missing and extinct 
taxa and taxa known from both countries but with data from only one 
country. Because both databases are essentially compilations of regional 
projects with different sampling intensities, we aggregated all data at the 
resolution of the 10′ longitude × 6′ latitude grid cells (c. 130 km2 on 
average; N = 3175) to achieve a more homogeneous sampling effort. We 
also cropped the spatial grid to the combined borders of the study area 
and excluded all grid cells with a land area < 117 km2, which corre
sponded to the size of the smallest (northernmost) grid cell not truncated 
by borders or coastlines. To further control for sampling bias, we 
removed grid cells containing <83 (95 %) of the 87 benchmark taxa, i.e., 
taxa occurring in each grid with a probability >0.98 based on the Beals 
smoothing method (Beals, 1984; Carmona and Pärtel, 2021; listed in 
Appendix A). The final grid comprised 3031 cells. 

2.1.1.2. Biogeographical status. We retrieved information on taxon 
biogeographical status from the BiolFlor database (Kühn et al., 2004) 
and FloraWeb (www.floraweb.de) for Germany and from Pyšek et al. 
(2012) for the Czech Republic. For analyses, we considered only native, 
established archaeophytes (i.e., non-native taxa introduced before the 
discovery of the Americas in 1492; Kühn et al., 2004) and established 
neophytes (i.e., non-native taxa introduced after 1492), excluding ca
sual (i.e., non-established) non-natives. Specifically, for taxa that were 
native in one country and casual non-native in the other country, we 
retained only records from where those taxa were native. For non- 
natives spontaneously occurring in both countries but established in 
only one country, we kept all known occurrences unless the number of 
occupied grid cells in each country was 1. Although retaining occur
rences of taxa that were considered casual in one of the countries meant 
overestimating the naturalised secondary range size in some cases, more 
importantly, it allowed us to ameliorate the differences in expert 
judgement regarding the degree of taxon establishment within the study 
area. We retained all records of taxa native to both counties and non- 
native taxa with established populations in both countries unless they 

were known from a single grid cell. Finally, for consistency reasons, we 
assigned a single, highest achieved degree of establishment to each 
taxon, per the national treatment of taxa having several statuses in the 
country. 

2.1.1.3. Habitat affinity. To enable analyses at the habitat level, we 
assigned each taxon to at least one of the following six broad habitat 
types: forest, heaths and scrub, grassland, wetland, rock and scree, and 
human-made. Information on taxon habitat affinity was collated from 
multiple reference sources (namely, BiolFlor, Kühn et al., 2004; Bun
desamt für Naturschutz, 2017; EUNIS, Chytrỳ et al., 2020; DAISIE, Roy 
et al., 2020; Diví̌sek et al., 2018; KORINA, www.korina.info, accessed 4 
August 2021; Sádlo et al., 2007), which used different habitat classifi
cation schemes. We grouped the habitat types in each data source into 
the six habitat types based on the authors' expertise (see Table A.1 for 
the habitat cross-walk) and merged all the data. To avoid reports of 
sporadic occurrences, we only retained habitats listed in >1 source for 
taxa represented in multiple sources. 

2.1.1.4. Traits. We selected three traits for our analyses: (1) typical 
maximum plant height (Hmax; measured in m), (2) seed mass (SM; g), 
and (3) specific leaf area (SLA; mm2 mg− 1). These traits depict major 
plant life strategies (Díaz et al., 2016; Westoby, 1998), correlate with 
many other important traits (Moles et al., 2009; Wright et al., 2004), act 
as both response and effect traits (Hanisch et al., 2020; Kühn et al., 2021; 
Pollock et al., 2012), and are well represented in open source trait da
tabases (e.g., Kattge et al., 2020). For best possible taxon coverage, we 
compiled trait data from multiple databases and online resources: LEDA 
(Kleyer et al., 2008), TRY (Kattge et al., 2011, 2020, accessed 1 October 
2019; see Appendix A for references within TRY), EcoFlora (Fitter and 
Peat, 1994), Info Flora (www.infoflora.ch), iFlora (www.i-flora.com), 
Kaplan et al. (2019), E-Vojtkó et al. (2020), and World Species (worldsp 
ecies.org). We included Hmax measurements on vegetative and genera
tive organs, SM measurements on dried seeds, and SLA measurements on 
sun and shade leaves and dry biomass. Where possible, we removed trait 
measurements from biomes outside our study area (e.g., tundra). 
Climbers were excluded from analyses of Hmax. When multiple SLA and 
SM values were available per taxon, we averaged them using the geo
metric mean (due to its lower sensitivity to extreme values compared to 
other measures of central tendency) after accounting for possible out
liers; for Hmax, we calculated as the geometric mean of the Hmax values 
provided in individual data sources. The information on woodiness was 
obtained directly or inferred from life and growth form. Woody taxa 
were considered perennials whose stems were either entirely lignified or 
had a lignified base. Woody plants in grasslands, wetlands, and rock and 
scree habitats were excluded from all analyses. We also removed woody 
archaeophytes due to the low sample size (most archaeophytes in our 
data were herbaceous) and low variation in trait values. 

Our final dataset comprised 1812 native, 181 archaeophyte, and 331 
neophyte taxa; Hmax was available for 96 %, SLA for 74 %, and SM for 88 
% of those taxa. Appendix A provides information on taxonomic name 
standardisation. 

2.1.2. Climate and land use data 

2.1.2.1. Baseline data. We retrieved baseline data on 14 macroclimatic 
variables from the 10′ × 10’ CRU 1961–1990 dataset (New et al., 2002). 
The variables were total annual precipitation (TAP; mm), precipitation 
of the driest and wettest quarters, precipitation of the driest month 
(Pdry), precipitation of the wettest month (Pwet), precipitation season
ality (coefficient of variation of monthly total precipitation, PCV; %), 
mean annual temperature (MAT; oC), mean and minimum temperature 
of the coldest month, mean temperature of the warmest month, 
maximum temperature of the warmest month (Twarm), mean tempera
ture of the driest quarter (Tdry), mean temperature of the wettest quarter 
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(Twet), and temperature seasonality (coefficient of variation of monthly 
average temperature; %). We rescaled all variables to the 10′ × 6′ spatial 
resolution by resampling original values onto a 0.5′ × 0.5′ grid using 
bilinear interpolation and then averaging obtained downscaled values 
within each 10′ × 6′ grid cell. As a baseline for land use, we used Corine 
Land Cover (CLC) data for the year 2000 (100 m × 100 m; CLC, 2020), 
which we aggregated to the 10′ × 6′ spatial resolution. Additionally, we 
determined which of the six habitat types were present in each grid cell 
based on the Ecosystem types of Europe 2012 raster dataset (EEA, 2018). 
Forests, grasslands, and human-made habitats were present in all 3031 
grid cells, whereas heaths and scrub occurred in 2091, wetlands in 966, 
and rock and scree habitats in 337 grid cells. All spatial data were pre
pared with the R package raster (v.3.4–13; Hijmans, 2021). 

2.1.2.2. Scenario projections. We obtained climate and land-use pro
jections at 10′ × 10′ spatial resolution for 2081–2100 from the IM
PRESSIONS project (www.impressions-project.eu). The IMPRESSIONS 
Integrated Assessment Platform (IAP2) includes three Representative 
Concentration Pathways (RCP2.6, RCP4.5, and RCP8.5) and four Euro
pean Shared Socio-economic Pathways (Eur-SSP1, Eur-SSP3, Eur-SSP4, 
and Eur-SSP5; Kok et al., 2019) and permits modelling individual and 
joint impacts of climate and socio-economic change until 2081–2100. 
Because the agreement between land use classes in CLC (chosen base
line) and IAP2 was low for all land-use types except urban, we kept only 
the percentage of urban land (U%) for further analyses. We used pro
jections for seven RCP–SSP scenario combinations, each based on three 
dynamically downscaled CMIP5 climate models for each RCP (see 
Table A.2 for more information on scenarios). 

2.2. Data analyses 

2.2.1. Data preparation 
We first log10-transformed all traits to reduce the skewness of their 

distributions and the effect of extreme values. Then, separately for 
woody and herbaceous native, neophyte, and archaeophyte taxa within 
selected habitats, we averaged each trait at the grid-cell level, omitting 
taxa with missing trait values. Thus, when all six habitat types were 
present in a grid cell, we computed up to 24 mean values per trait per 
grid cell. Trait per-cell means based on fewer than four taxa were heu
ristically excluded from analyses. Next, we separately scaled trait means 
of woody and herbaceous native, neophyte, and archaeophyte plant 
assemblages at the habitat level to zero mean and unit variance. We did 
so because we aimed to capture how taxon status, woodiness, and 
habitat moderated the effects of climate and land use rather than to 
quantify their direct effects on traits. Moreover, such scaling allowed us 
to impose a single spatial autocorrelation structure across habitats and 
thus quantify all effects within a single model. Scaled trait per-cell 
means were used as response variables in statistical models. 

To reduce the redundancy among the potential environmental pre
dictor variables, we performed variable selection based on the variance 
inflation factor (VIF) and Pearson's correlation coefficient (r; shown in 
Fig. A.2) using the R package usdm (v.1.1–18; Naimi et al., 2014). Ul
timately, we retained eight predictor variables: Pdry, Pwet, PCV, Tcold, 
Twarm, Tdry, Twet, and U%. Before analyses, we scaled these variables to 
zero mean and unit variance to aid model parametrisation and inter
pretation. The per-cell number of taxa (Ntaxa; see 2.2.2. Statistical 
models) was scaled similarly to traits. 

2.2.2. Statistical models 
We assessed TERs using linear multilevel models. All models were 

parameterised within a full Bayesian framework using the R package 
brms (v.2.14.4; Bürkner, 2017). We modelled individual-trait per-cell 
mean values as the function of climatic variables and U% (continuous 
predictors) and taxon biogeographical status, woodiness, and habitat 
(categorical predictors). More specifically, we developed a suite of 

slope-only models, in which we included a single continuous predictor 
and its two- and three-way interactions with biogeographical status and 
woodiness that were allowed to vary by habitat. Such models allowed us 
(1) to quantify the extent to which the effects of climate and urbanisa
tion differ between native and non-native taxa, herbaceous and woody 
taxa, as well as across different habitats, and (2) to incorporate this 
potential context-dependency into projections of future spatial trait 
distributions. To account for residual spatial autocorrelation, we 
included conditional autocorrelation structure (CAR) with grid cell 
identifier as a grouping factor in all our models. In all our models, we 
also controlled for Ntaxa by including this metric as another predictor 
variable because, in some cases, average trait values correlated with 
Ntaxa. In particular, this correlation was negative for Hmax, suggesting 
that taxon-richer grid cells had, on average, a higher proportion of 
shorter taxa. Such a pattern may reflect sampling effort (e.g., smaller 
plants are more likely to remain undetected; Chen et al., 2013), be a 
genuine ecological phenomenon (Aarssen et al., 2006), or both. In either 
case, we chose to control for Ntaxa, as otherwise, its effect could be 
incorrectly attributed to environmental predictors. A model for each 
environmental predictor can be written as follows: 

yi ∼ βew
j[i]eiwi + βes

j[i]eisi + βews
j[i] eiwisi + βnws

j[i] niwisi + ϵi + zk[i]

βew
j ∼ N

(
μew,σ2

ew

)

βes
j ∼ N

(
μes,σ2

es

)

βews
j ∼ N

(
μews,σ2

ews

)

βnws
j ∼ N

(
μnws,σ2

nws

)

ϵ ∼ N
(

0,σ2
y

)

zk ∼ N(0,Σ)

where yi is the trait per-cell mean value for the ith observation (i = 1, …, 
Nobs), calculated for each combination of habitat type, woodiness, and 
biogeographical status; ei is the environmental predictor; wi is woodi
ness; si is biogeographical status; ni is the number of taxa; βew

j , βes
j , βews

j , 
βnws

j are slopes for the interactions between variables indicated in the 
superscript in the jth habitat type (j = 1, …, Nhabitats); βes

j is the slope for 
the interaction between ei and si in the jth habitat type; βews

j is the slope 
for the interaction between ei, wi and si in the jth habitat type; ϵiis the 
residual effect of the ith observation; zk is the residual spatial random 
error for the kth grid cell (k = 1, …, Ncells); μew, μes, μews, μews are the 
overall slopes for the interactions specified in the subscript; σ2

ew, σ2
es, σ2

ews, 
σ2

nws are the habitat-level variances for the slopes; σ2
y is the residual 

variance; and Σ is the covariance matrix, as defined in a conditional 
autoregressive model. We chose to fit separate models for each envi
ronmental predictor because of the high complexity of a full model and 
possible collinearity due to many interaction terms with the same cat
egorical predictors. To prevent the sampler from considering highly 
implausible values, we used zero-centred weakly informative priors 
chosen based on prior predictive checks (Wesner and Pomeranz, 2021). 

2.2.3. Model predictive performance 
We evaluated the predictive performance using exact k-fold cross- 

validation. The folds were determined as spatial blocks to avoid po
tential overestimation of predictive performance (Roberts et al., 2017). 
For that, we overlaid a 3 × 3 spatial-block grid onto the grid of the study 
area (see Fig. A.1) using the R package blockCV (v2.1.4; Valavi et al., 
2019). This resulted in 8 spatial blocks, two of which we merged to 
achieve a more even distribution of grid cells across folds. We then 
assigned all data points within a grid cell to a specific fold and performed 
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7-fold cross-validation with the R package brms (Bürkner, 2017). As the 
measures of predictive model performance, we calculated the k-fold 
information criterion (kfoldIC) and the root mean square error based on 
cross-validated predictions (RSME; both statistics are reported in 
Table A.3). 

2.2.4. Future projections 
We obtained projections of per-cell mean values of each trait under 

baseline and scenario conditions. We set the scaled Ntaxa to 0 to generate 
all projections assuming equal taxon numbers across the study area. 
Projections were computed as the weighted average of posterior pre
dictive distributions from the eight single-environmental-predictor 
models using Bayesian stacking of predictive distributions (Yao et al., 
2018). We then calculated the projected per-cell change in each trait 
under each scenario as the difference between the medians of the pro
jected future scenario-based and baseline posterior predictive distribu
tions. To enable comparison across biogeographical statuses, we 
rescaled trait change values of archaeophytes and neophytes to the 
standard deviations (SD) of a baseline trait distribution for native taxa of 
respective woodiness and habitat (see Table A.4 for log10-transformed 
native trait values equalling 1 SD for each woodiness and habitat com
bination). We calculated the Euclidean distance between the projected 
per-cell posterior means of the three traits on the baseline and scenario 
data to assess the overall magnitude of trait change. 

2.2.5. Importance of environmental predictors 
To summarise the effects of individual environmental predictors on 

all three traits and to visualise them in the multivariate space, we per
formed multiple redundancy analyses (RDA) using the R package vegan 
(v.2.5–7; Oksanen et al., 2020). We chose RDA as a way to report TERs 
instead of reporting marginal effects from individual models because 
this allowed us to synthesise the importance of environmental predictors 
as reflected in projections (i.e., accounting for weighting applied to 
individual-model posterior predictive distributions; see 2.2.4. Future 
projections). For each RDA, we used a separate dataset containing the 
projected trait change (i.e., the difference between scenario and baseline 
projections) and the change in environmental predictors (i.e., the dif
ference between scenario and baseline values) across all the scenarios 
corresponding to a unique combination of biogeographical status, 
woodiness, and habitat. As the measure of individual environmental 
predictor contribution to trait change, we calculated the length of the 
vectors with the initial point at (0,0) and the terminal point at the scores 
of the first two RDA axes. The lengths of the vectors reflected the 
weighted effect sizes of the predictors used to calculate posterior pre
dictive distributions for all traits. The angles among those vectors and 
individual traits in the two-dimensional RDA space reflected TERs. 

All statistical analyses and visualisations were performed in the R 
environment v4.1.0 (R Core Team, 2021). 
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3. Results 

3.1. Overview of trait change projections 

Overall, we observed high variability (i.e., the spread across poste
rior distributions) and uncertainty (i.e., the spread within posterior 
distributions) in the magnitude and direction of the projected per-cell 
change in Hmax, SLA, and SM under environmental change scenarios. 
The variation in the projected trait change was pronounced at all three 
grouping levels considered in the analyses, i.e., taxon biogeographical 
status, woodiness, and habitat type, and increased with the degree of 
environmental change (the least extreme scenario, RCP2.6 Eur-SSP1 and 
the most extreme scenario, RCP8.5 Eur-SSP5 are shown Figs. 1–4; other 
scenarios in B.1–B.6, B.13). Likewise, uncertainty associated with indi
vidual per-cell projections varied across the grouping levels and was 

generally higher under more extreme scenarios, being driven much 
more by climate change than urbanisation (Figs. B.7–B.12). The likeli
hood of trait change (measured as the proportion of grid cells with 
projected posterior credible intervals excluding zero) was lowest under 
RCP4.5 and RCP8.5 for woody native SLA in human-made habitats and 
archaeophyte SM in human-made habitats and heaths and scrub (results 
not shown). 

Below, we focus on the posterior means of the projected per-cell 
posterior distributions, which reflect the average trends in our pro
jections but do not embrace the uncertainty, for the least and most 
extreme scenarios to illustrate the maximum future option space for 
2081–2100. Results for other scenarios are presented in Appendix B. 
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Fig. 2. The projected per-cell (10′ × 10′) change in the log10-transformed maximum plant height (Hmax) under the least extreme combined climate and socio- 
economic scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for 2081–2100, for herbaceous (a, c) and woody 
(b, d) taxa in six broad habitat types. The trait change here is the posterior means of per-cell model predictions. The violin plots depict the distributions of predicted 
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quartiles, and whiskers give roughly 95 % credible intervals). For each habitat by woodiness combination, the trait change is presented in standard deviations (SD) of 
the baseline trait distribution of native taxa for that combination. For example, the overall change of 0.60 in Hmax of forest herbaceous neophytes under the RCP2.6 
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other scenarios. 
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3.2. Projected trait change 

For all traits considered simultaneously, the magnitude of trait 
change was projected to be, on average, higher in forests, heaths and 
scrub, and grasslands than in other habitat types (Fig. 1a), for non- 
natives rather than natives (Fig. 1b) and for woody rather than herba
ceous plants (Fig. 1c). The direction of projected change in individual 
traits often diverged for herbaceous vs woody plants and natives vs 
neophytes (Fig. B.13). 

Across all scenarios, the mean trend for Hmax change in herbaceous 
plant assemblages within tree- and shrub-dominated habitats was pos
itive throughout the study area, being more pronounced for archae
ophytes and neophytes than for natives (Figs. 2a,c, B.1a–f). In other 
habitats, the projected change of Hmax was more heterogeneous spatially 
and across biogeographical statuses. Notably, in grasslands and rock and 
scree habitats, herbaceous native Hmax showed very little to no change, 
whereas herbaceous neophytes were projected to increase in Hmax, 
especially in grasslands (Figs. 2a,c, B.1g–l, B.14a,c). As for woody plant 
assemblages, only Hmax of natives demonstrated a predominantly posi
tive trend, with the highest increase projected for human-made habitats 
under RCP8.5 SSP5; meanwhile, Hmax of neophytes tended to mainly 
decrease (Figs. 2b,d, B.2, B.14b,d). 

Like Hmax, the projected change of SLA varied with biogeographical 

status, woodiness, and habitat (Figs. 3, B.3–4). Herbaceous SLA was 
projected to decrease, with some exceptions (e.g., native SLA in wet
lands; Figs. 3a,c, B.3). The degree of this decrease tended to be greater 
for natives than neophytes (Fig. B.15a,c). In contrast, woody SLA can be 
expected to increase for both natives and neophytes, with the latter 
increasing more than natives in forests and heaths and scrub (Figs. 3b,d, 
B.4, B.15b,d). 

The overall magnitude of SM change was comparable to that of Hmax 
and SLA. In forests and heaths and scrub, woody native and non-native 
SM was projected to only increase, whereas, in human-made habitats, 
woody neophyte SM showed a decline (Figs. 4b,d, B.6a–e, B.16b,d). The 
direction of projected change in herbaceous SM was less uniform and 
varied spatially as well as with habitat and biogeographical status 
(Figs. 4a,c, B.5, B.16a,c). Particularly, SM of archaeophytes tended to 
respond opposingly to that of natives and neophytes and was more likely 
to decrease in most habitats. 

3.3. Importance of environmental predictors 

Across all three traits, Twarm and Tcold captured the highest amount of 
variation in the projected trait change, followed by PCV, Pdry, and Pwet; 
the contributions of Tdry, Twet, and U% were considerably smaller 
(Fig. B.17). The role of individual environmental predictors generally 
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Fig. 3. The projected per-cell (10′ × 10′) change in the log10-transformed specific leaf area (SLA) under the least extreme combined climate and socio-economic 
scenario (RCP2.6 Eur-SSP1, all climate models pooled) and the most extreme one (RCP8.5 Eur-SSP5) for herbaceous (a, c) and woody (b, d) taxa in six broad 
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varied with biogeographical status, habitat, and woodiness (Fig. 5). 
Nonetheless, some predictors showed highly consistent associations 
with the projected trait change (as per respective underlying TERs). For 
example, a projected increase in herbaceous SM correlated mostly 
positively with PCV and negatively with Pdry; a negative relationship 
was, however, observed for herbaceous neophyte SM in the forest, 
heaths and scrub, and rock and scree habitats. Similarly, the increase in 
Tcold contributed positively to the SM increase in woody plant assem
blages, except for neophytes in human-made habitats. Twarm and Tcold 
exhibited a strong positive relationship with herbaceous and woody 
Hmax, although the relationship was negative for human-made habitats 
and woody neophytes. In some cases, the effect of temperature on Hmax 
was not as pronounced as that of Pwet and PCV. Mainly, native Hmax in 
grasslands and human-made habitats was strongly positively affected by 
Pwet and PCV, whereas in rock and scree habitats, native Hmax was 
negatively associated with those two predictors. With few exceptions, 
herbaceous SLA correlated negatively with Twarm, Tcold, and Pdry. 
Furthermore, native herbaceous SLA positively correlated with Pwet in 
all habitats besides wetlands, whereas non-native herbaceous SLA 
consistently showed a negative relationship with Pwet. Unlike 

herbaceous SLA, native and neophyte woody SLA was strongly posi
tively related to Twarm, Tcold, and Pdry (Fig. 5). 

4. Discussion 

In this study, we quantified broad-scale relationships of three traits 
central to plant life history – maximum height (Hmax), specific leaf area 
(SLA), and seed mass (SM) – with eight selected environmental variables 
within Central Europe. We then used the obtained relationships to 
project trait change under seven plausible scenarios of future environ
mental change for 2081–2100. We modelled the variation in TERs 
associated with plant woodiness, biogeographical status, and habitat 
type to account for unique adaptations of different types of plant as
semblages to the environment, hence making particular aspects of 
mechanistic context-dependence in TERs any resulting trait projections 
explicit (Catford et al., 2021). We showed that the three traits were 
projected both to increase and decrease to varying degrees across and – 
in many cases – within habitats and that the overall magnitude of this 
change was expected to be, on average, higher for non-native than 
native taxa (Fig. 1b) and under more extreme scenarios (Figs. B.1–6). 
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Moreover, we found that in the future, distinct environmental responses 
of native and non-native plants may lead to even higher trait values than 
currently observed for non-natives (e.g., herbaceous Hmax in most hab
itats) as well as to a reduced average native–non-native trait difference 
(e.g., woody Hmax; Figs. B.14–16), which may lead to altered competi
tive hierarchies among natives and non-natives (Kunstler et al., 2016). 

4.1. Projected overall trait change across habitat types 

The overall magnitude of trait change was projected to be higher in 
forests, heaths and scrub, and grassland habitats than in rock and scree, 
wetland, and human-made habitats (Fig. 1a). This result may reflect the 
low sensitivity of the latter to environmental change. In particular, rock 
and scree habitats are highly stable systems defined by environmental 
stress more than by macroclimate. By contrast, wetlands are strongly 
shaped by local hydrology and show much less species turnover along 
macroclimatic gradients than other habitats. Moreover, the spatial res
olution of our analyses might have been too coarse to capture finer 
environmental gradients that traits of wetland and rock and scree plant 
assemblages respond to. Human-made habitats typically are more 
environmentally homogeneous and contain plants preadapted to 
disturbance and warm and dry conditions (Kalusová et al., 2017). 
Therefore, it is expected for human-made habitats to have plant taxa 
with relatively large SLA and small SM, irrespective of macroclimate. 
Overall, the observed high variation across habitats proved the impor
tance of incorporating habitat information into macroecological ana
lyses, as failing to do so would have blurred TERs. 

4.2. Projected change in plant maximum height and its drivers 

The hierarchy of environmental drivers shaping the projected change 
in Hmax was highly habitat-specific, and the trait change patterns found 
across non-native plant assemblages often deviated from those in native 
assemblages. Specifically, temperature variables' positive effects drove 
the projected change of Hmax in forests and heaths and scrub, whereas, in 
other habitats, precipitation variables' positive contributions prevailed 
(Fig. 5). Previous studies have similarly detected a robust positive as
sociation between temperature and plant height both across and within 
habitat types at the continental scale (e.g., Šímová et al., 2018; forest 
understories, Padullés Cubino et al., 2021) and the regional scale (e.g., 
forest understories, Maes et al., 2020; mountain grasslands and rock and 
scree, Dubuis et al., 2013). Meanwhile, Moles et al. (2009) reported that 
the best predictor of plant height globally was the precipitation of the 
wettest month, and our results for grasslands and rock and scree habitats 
supported this. Notably, while the TERs for native woody assemblages 
add to the current consensus on the effect of climate on woody plant 
height (Šímová et al., 2018; Swenson et al., 2012), the results for neo
phytes suggest that woody non-natives may be preadapted to a different 
subgradient of the global climatic gradient – in particular, to hotter and 
drier conditions – where the opposite, negative relationship with tem
perature can occur (Madani et al., 2018; Moles, 2018). A negative 
relationship between Hmax of invasive neophytes and Tcold was also 
shown by Milanović et al. (2020), although the mechanisms behind this 
phenomenon remain unclear and require further exploration. 

4.3. Projected change in specific leaf area and its drivers 

Contrary to several previous studies (Dubuis et al., 2013; Rosbakh 
et al., 2015; Šímová et al., 2018), herbaceous native and neophyte SLA 
correlated primarily negatively with temperature, and only herbaceous 
archaeophyte SLA tended to show the opposite. Speculatively, we can 
assume that the patterns in the SLA–environment relationships were 
partially confounded with unaccounted environmental drivers, such as 
continentality and soil fertility. Like temperature, another pronounced 
driver of herbaceous SLA change, Pdry, also negatively affected SLA 
across all herbaceous assemblages. In contrast, Pwet positively and 
negatively influenced herbaceous native and neophyte SLA, respectively 
(Fig. 5). A negative shift of native SLA along the Pdry gradient appears in 
disagreement with a previously documented negative effect of drought 
on SLA (Wellstein et al., 2017; Wright et al., 2005). This pattern could be 
attributed to the occurrence of many plant taxa with evergreen, low-SLA 
leaves in the mountains in Central Europe, where precipitation is high 
(Chytrý et al., 2021). In contrast to herbaceous SLA, yet in alignment 
with previous reports (Šímová et al., 2018; Swenson et al., 2012), SLA 
across all woody assemblages exhibited a strong positive relationship 
with temperature as well as Pdry. Environmental change should, there
fore, lead to an increase in woody native SLA and even more so in woody 
neophyte SLA (Figs. 3b,d, 5, B.4), which may allow non-natives to gain a 
further advantage over natives (Pyšek and Richardson, 2008). 

Reflecting the combined effect of all the predictors, our projections 
mainly forecasted a decrease in herbaceous SLA; an increase throughout 
the study area was projected only for native herbaceous SLA in wetlands 
and archaeophyte SLA in forests, and a partial increase in SLA was 
projected for archaeophytes in wetlands and human-made habitats and 
herbaceous neophytes in grasslands and human-made habitats (Figs. 3, 
B.3). Despite a general projected shift towards more conservative 
resource-use strategies (i.e., lower SLA), our projections suggest that 
herbaceous neophyte SLA may be affected less than SLA of herbaceous 
natives (Figs. B.3, B.15). These changes may lead to a further increase in 
the SLA imbalance between native and non-native taxa towards the 
latter in the region (Diví̌sek et al., 2018), possibly resulting in an even 
higher proportion of invasive non-natives (Pyšek and Richardson, 
2008). The alteration of the SLA composition will undoubtedly affect 
ecosystem functioning. For example, an overall decrease of SLA in 
grasslands may lead to higher root biomass (Klimešová et al., 2021) and 
total soil carbon (Garnier et al., 2004), as well as reduced nutrient 
cycling (Lavorel et al., 2011) and productivity (Brun et al., 2022). 

4.4. Projected change in seed mass and its drivers 

Our results showed that overall, drier, less stable climates might, on 
average, contribute to an increase in herbaceous SM but a decrease in 
woody SM (Fig. 5). This finding is congruent with previous studies 
(Baker, 1972; Dubuis et al., 2013; Šímová et al., 2015; Swenson et al., 
2012; Vandelook et al., 2018) and at least partially explains the het
erogeneous relationships of SM and precipitation in the literature (dis
cussed in Moles, 2018). Notably, while this pattern holds for natives and 
archaeophytes across all habitats, neophytes often deviate from it. 
Specifically, we observed the opposite effect of the precipitation amount 
and seasonality on herbaceous neophyte SM in the tree- and shrub- 
dominated as well as rock and scree habitats and on woody neophyte 
SM in human-made habitats (Figs. 5, B.13). Such divergence from native 

Fig. 5. The relative contribution of individual environmental predictors to the projected change in herbaceous and woody plant maximum height (Hmax), specific leaf 
area (SLA), and seed mass (SM), calculated using redundancy analysis (RDA). A separate RDA was performed on each subset (N = 24) of per-cell projections across all 
the scenarios, representing a unique combination of taxon biogeographical status, habitat, and woodiness. Shown are the RDA scores of the predictors (as vectors) 
and traits (as triangles, centred at seed mass) for the first two RDA axes (RDA1, RDA2). RDA1 and RDA2 captured 91–100 % of the variation in the data. The lengths 
of vectors are proportional to the magnitude of the effects of respective predictors on the three traits simultaneously. The overall contributions of each predictor, 
calculated as the combined length of their respective vectors across all the RDA spaces, are shown in Fig. B.17. The angles among the vectors and triangles reflect 
their correlation, which equals the cosine of the angle. For example, most assemblages' angle between SM and precipitation seasonality is acute, indicating their 
strong positive correlation. 
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herbaceous SM may be confounded with the turnover in the growth 
form, i.e., the proportional increase of small-seeded, short-lived neo
phytes in drier areas (Sandel et al., 2010). Additionally, the contrasting 
responses of native and non-native plant assemblages to precipitation 
may be due to the differences in the duration of their environmental 
exposure and the fact that many non-natives are still actively spreading. 
For archaeophytes, the positive effect of precipitation is likely to be 
overwhelmed by the negative impact of higher temperatures, leading to 
an overall decrease in SM (Figs. 4, B.5). Interestingly, for woody SM, the 
overall effect of precipitation was not as pronounced as that of tem
perature. Notably, our results revealed a strong positive association of 
woody SM with Twarm and Tcold (Fig. 5), which drove the projected in
crease in woody SM (Figs. 4b,d, B.6). This finding is in line with previous 
studies which also documented a strong positive effect of temperature 
on SM of woody plants (Moles et al., 2014; Šímová et al., 2015, 2018; 
Swenson et al., 2012) and highlighted that herbaceous SM is less sen
sitive to temperature than woody SM (Šímová et al., 2018). 

4.5. Differences between native and non-native taxa 

The observed differences in TERs and resulting trait change pro
jections between native and non-native plant assemblages indicate that 
biogeographical status is pivotal in species performance and community 
assembly along environmental gradients. The effect of biogeographical 
status may reflect the eco-evolutionary novelty of non-natives (Heger 
et al., 2019; Saul et al., 2013) or their pre-adaptation to specific con
ditions (Maron et al., 2004). For example, non-native species often 
originate from more nitrogen-rich habitats (Dostál et al., 2013) and, 
therefore, are typically characterised by high SLA. As we have shown, in 
the long run, the differential response of native and non-native (espe
cially neophyte) species to the change in environmental factors might 
lead to even more substantial differences in their trait compositions than 
today (Figs. B.14–16). These differences suggest that ecosystem func
tions provided by future neophyte assemblages may not be redundant to 
those currently offered by natives. On the contrary, functions presently 
provided by natives may be replaced with different functions supplied 
by neophytes, thus leading to an increase rather than buffering of 
functional turnover during global change. 

4.6. Conclusions 

This study assessed how plant trait values might shift at the macro
scale under future environmental change until 2081–2100. Our results 
depicted substantial but frequently neglected contingency of TERs upon 
plant woodiness, biogeographical status, and habitat type, thereby 
explaining some of the existing idiosyncrasies within the literature and 
producing more informative and refined TERs and projections of future 
trait changes compared to previous studies. The obtained projections 
provide an insightful perspective on the conditions under which non- 
native plants may prevail over natives and vice versa and can serve as 
starting points for exploring changes in ecosystem functions and services 
in a rapidly changing world. We recommend routinely incorporating 
information on habitat, growth form, and biogeographical status when 
making any inference about plant traits' present or future variation 
along environmental gradients and the impacts of this variation on 
ecological processes. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.scitotenv.2023.167954. 
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Carmona, C.P., Pärtel, M., 2021. Estimating probabilistic site-specific species pools and 
dark diversity from co-occurrence data. Glob. Ecol. Biogeogr. 30 (1), 316–326. 
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Chen, G., Kéry, M., Plattner, M., Ma, K., Gardner, B., 2013. Imperfect detection is the rule 
rather than the exception in plant distribution studies. J. Ecol. 101 (1), 183–191. 
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