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A P P L I E D  E C O L O G Y

Global monitoring for biodiversity: Uncertainty, risk, 
and power analyses to support trend change detection
Brian Leung1,2,3* and Andrew Gonzalez1,4,5

Global targets aim to reverse biodiversity declines by 2050 but require knowledge of current trends and future 
projections under policy intervention. First, given uncertainty in measurement of current trends, we propose a risk 
framework, considering probability and magnitude of decline. While only 11 of 198 systems analyzed (taxonomic 
groups by country from the Living Planet Database) showed declining abundance with high certainty, 20% of 
systems had a 70% chance of strong declines. Society needs to decide acceptable risks of biodiversity loss. Second, 
we calculated statistical power to detect trend change using ~12,000 populations from 62 systems currently show-
ing strong declines. Current trend uncertainty hinders our ability to assess improvements. Trend change is detectable 
with high certainty in only 14 systems, even if thousands of populations are sampled, and conservation action 
reduces net declines to zero immediately, on average. We provide potential solutions to improve monitoring of 
progress toward biodiversity targets.

INTRODUCTION
There has never been more interest in allocating resources to reversing 
biodiversity loss. Human impacts have been detectable on trends in 
population abundances (1–3), genetic diversity (4), species diversity 
(5, 6), and ecosystem extent, integrity, and connectivity (7). In response, 
the global community has agreed to the Kunming-Montreal Global 
Biodiversity Framework [GBF; see Conference of the Parties (COP) 
decision 15/4] with ambitious targets such as preserving 30% of land 
and waters by 2030, halting extinctions, maintaining healthy popula-
tions, and ensuring the supply of ecosystem benefits to people. The 
GBF is a theory of change with an explicit focus on addressing the 
causes of biodiversity loss and the action needed to reverse current 
biodiversity trends. This requires knowledge of where, why, and how 
fast biodiversity is changing (8). However, the implementation of the 
GBF is hindered because information about biodiversity change is 
geographically patchy (9), and our estimates of trends in biodiversity 
and ecosystem metrics are uncertain (2).

This uncertainty arises in part because geographic coverage of 
biodiversity observations is sparse. For example, species occurrences 
in the Geographic Biodiversity Information System (GBIF) and Ocean 
Biodiversity Information System (OBIS) cover less than 7% of the 
world’s surface at 5 km resolution, and less than 1% for most taxa at 
higher resolutions (10). While ~150,000 species have been assessed 
in the species Red List Index (https://iucnredlist.org/), this remains 
a small fraction of the global species total. Further, most locations 
with data have been sampled at only a single point in time, precluding 
calculation of biodiversity change for these points. Even where pop-
ulations are monitored over time, uncertainty can be high regarding 
the true underlying trends due to large within-population fluctua-
tions and differences in growth rates across populations (2). It is in 
the context of this uncertainty that the task of detecting improvements 
in biodiversity by 2030 under the GBF must be considered.

The monitoring framework of the GBF (see COP decision 15/5) 
has been established to help countries assess their progress toward 
the targets by 2030 and achieving the goals by 2050. The indicators 
of the monitoring framework should allow countries to track their 
progress across the many dimensions of biological and social trans-
formation prescribed by the targets of the GBF (11). The indicators 
of the monitoring framework measure the amount and type of action 
implemented to reach the targets for each of the four goals and assess 
change in direct measures of biodiversity, ecosystem state and extent, 
and the benefits humans obtain from nature (12). The indicators of 
direct change in facets of biodiversity, such as abundance, require 
adequate data in the form of time series to reliably estimate trends 
(5, 8, 9). The monitoring framework, if properly and equitably re-
sourced, could provide the incentive to fill data gaps that make ready 
assessment of trends in abundance difficult for large parts of the 
planet (10). However, at this time, we do not know how much more 
monitoring capacity is needed to obtain accurate and robust estimates 
of change and to guide future monitoring. The monitoring framework 
also lacks guidelines on how to address statistical uncertainties in 
current trends and how to assess progress given this uncertainty. 
Here, we aim to address these questions, focusing on trends in wild-
life abundance for illustration.

Methods for determining whether biodiversity has improved under 
the GBF must contend with several issues. First, there is substantial 
variation in the sign and magnitude of trends for different measures 
of biodiversity. For example, trends in abundance are variable across 
taxa and scales (1). Some taxa are declining rapidly in some regions 
(3), but other taxa are declining weakly, are stable, or are increasing 
in other regions. Crucially, improvements in one region (e.g., Europe) 
do not negate declines in others (e.g., Indo-Pacific), although they 
potentially reflect geographic variation in the drivers of population 
change and the effectiveness of conservation action (2). Second, even 
within regions and taxonomic groups, populations vary in the magni-
tude of their trends. Third, even within populations, uncertainty will 
likely be large given population fluctuations, which are often high (2), 
due to demographic and environmental stochasticity and variable 
impacts of human drivers. A systematic and statistically sound 
approach is needed to assess the evidence for improvements in 
biodiversity trends that accounts for these sources of uncertainty (8).
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Trend detection is a general statistical challenge in biodiversity 
monitoring. By detection, we mean the inferential process of identi-
fying that a measure of biodiversity has changed over time relative 
to a baseline or reference state, with an estimate of the magnitude of 
change detected along with a statement of statistical confidence (8). 
The uncertainty in time series is a general problem that pervades 
assessments of change for many biodiversity measures (9), including 
genetic diversity (4) and species richness (13). Added to these chal-
lenges, if we are to evaluate progress under the GBF by 2030, im-
provements must be detectable within the next decade, and thus, 
collecting additional long time series will not be feasible.

We have two broad aims: (i) to assess current abundance trends, 
with a focus on uncertainty. Here, we propose a framing of trend 
assessments toward a risk-based approach that considers thresholds 
for both probability (certainty) and rates of decline; (ii) whether future 
changes in trends can be detected given current uncertainty in the 
time series across taxa and countries. Here, we propose a “biodiversity-
change power analysis” to assess our ability to detect recovery fol-
lowing conservation action. We show that current uncertainty in trends 
will limit future power, but we provide potential solutions as well. 
We focus on trends in abundance (Fig. 1), given that it is a direct 
component of biodiversity (14) and underpins a key objective of Goal 
A of the GBF—to reduce the risk of extinction 10-fold and ensure 
that the abundance of native wild species is increased to healthy and 
resilient levels. Our analysis uses the Living Planet Database (LPD), 
which consists of ~30,000 empirical population trend estimates, 
and exemplifies the challenges of trend variability and uncertainty 
described above.

RESULTS
Current abundance trends and acceptable risk
Analyses of biodiversity trends often focus on high certainty (e.g., 
95% confidence). However, this may not be the best paradigm, given 
the levels of uncertainty typically associated with population trends, 
and the potentially severe, irreversible consequences of extinction. 
Instead, a risk-based framework accounting for severity and its 
probability of occurrence may be more appropriate to explicitly 
confront the question of what risks of biodiversity decline we as a 
society are willing to accept. We analyze current abundance trends 
for 198 systems (combinations of vertebrate taxonomic class and 
country) in the context of risk.

The analysis shows (Fig. 2) that at a 95% credible interval (one-
tailed), there are 11 systems that show very high rates of decline 
(1.5%/year, which, if constant, would result in ~50% abundance 
decline in a population across 50 years) (table S1). Approximately 
half of these systems occurred in countries in the Indo-Pacific, but 
three countries also showed declines in Africa (mammals) and even 
three European countries (although most strongly increasing systems 
were also in Europe; table S1). However, we might also consider that 
a 70% chance of rapid decline is an unacceptably high risk, in which 
case there would be 37 country/taxonomy systems that would 
fall into this category (18.7% of the 198 systems examined). At 
50% probability, there are 60 systems that could be showing very 
high rates of decline (30%). Alternatively, as a global communi-
ty, we might be averse to even a small chance of strong decline, 
given the potential for sustained declines at this rate to result in 
the extirpation of many populations. For instance, 148 of 198 systems 

Fig. 1. Conceptual diagram of the trend assessment process. Monitoring produces time series of trends in abundance for the many populations worldwide; here, we 
illustrate this for three populations. Our goals are twofold: (i) to assess trends and the risk of very rapid declines worldwide and (ii) whether we have the statistical power 
to detect whether population trends have generally improved after conservation action (vertical lines). To do so, we convert population abundance time series (left column 
of graphs) into annual population growth rate estimates [log(Nt+1/Nt)] (middle column of graphs) to account for the expected temporal autocorrelation. We then estimate 
the mean trend before (red horizonal lines) and after (blue horizontal lines) implementation of conservation action. We show three populations here, but in reality, each 
taxonomic group per country (system) is composed of many sampled populations. We aggregate growth rates across all populations within a system, resulting in a distri-
bution of growth rates (right) before (red) and after (blue) action. We tested whether we could detect a shift in the mean of the distribution, before and after conservation.
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had at least a 10% probability that they are declining at more than 1.5%/
year (Fig. 2).

Future changes in abundance trends, policy intervention, 
and biodiversity power analysis
Next, we assess whether we can detect changes in trends due to policy 
(i.e., actions to reach target 4 of the GBF). We note that there are 
several ways to analyze change depending on the types of changes 
we seek to detect [i.e., compare mean abundance, compare trends, 
or a combination of trends and immediate change (15)]. We focus 
on analyses of trends to see whether conservation actions result in 
changes in the right direction, where populations are beginning to 
recover (e.g., perhaps due to habitat restoration). This is less ambi-
tious than full recovery to reference levels but is still a meaningful 
target given the need to show progress by 2030. In addition, we assess 
abundance trends, but not trends in natural and human drivers, 
although this information could reduce uncertainty about the rate 
and the causes of the trends (16, 17). Nonetheless, the issue of un-
certainty and power will likely remain important, and the concepts 
from this study are generalizable. Last, we do not consider immediate 
shifts (15) (e.g., increases in abundance due to stocking, or reintro-
duction) and instead focus on changes in conditions.

We focused on 62 systems, which had a current Bayesian posterior 
mean suggesting strong declines (>1.5%/year), and examined the idea 
lized policy scenario where conservation actions immediately stop 
populations from declining on average. Even in this optimistic scenario, 
for 48 systems, we would not be able to reliably detect improved 

population trends, even with thousands of populations sampled 
(Fig. 3 and table S2). For 39 systems (more than half), the power to 
conclude with 95% confidence that populations had improved never 
exceeded 20% (e.g., fish in Taiwan); moreover, in these cases, power 
asymptotically declined to zero with increasing number of populations 
sampled (e.g., mammals in Panama). This result arose because the 
uncertainty in the estimates of current trends limits our ability to 
detect changes in trends; with infinite sampling, we can get a very 
reliable estimate of the future trend, but if the current trends are 
uncertain, the credible intervals will overlap a mean decline = 0 (the 
effect of our hypothetical policy). The systems where improvements 
could be reliably detected were those where the declines were also 
already highly certain (e.g., fish in Romania).

Potential solutions
We propose three practical ways to overcome the difficulties in trend 
change detection.
Increased monitoring effort to improve estimates of 
current trends
The first solution is to improve current trend estimates with additional 
monitoring, given that the potential power to detect improvements 
is limited by current uncertainty levels. We focused on the 45 systems 
with strong declines but high uncertainty (table S3). We asked what 
level of population monitoring would be required to become 95% 
certain that these systems were declining on average (Fig. 4 and 
table S3). For most systems, power levels off with less than 250 popula-
tions surveyed. However, for some systems such as fish in Taiwan, 
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Fig. 2. Number of population systems experiencing decline by probability threshold. The number of systems that could be experiencing a decline (black line), or 
strong decline >1.5%/year (red line), at different probability thresholds. Eleven of 198 systems were identified as declining with 95% certainty (one-tailed credible intervals), 
while 37 systems had at least a 70% chance of strong decline. The acceptable level of risk (combination of probability and magnitude of decline) remains an open question.
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power remained low (<40%), requiring >4000 populations to reach 
>70% power. Other systems such as birds in Ghana had power that 
remained low (<50%) even with >4000 populations. In contrast, others 
such as mammals in Panama, birds in the United Arab Emirates, or 
herps in Argentina could have ~90% power with 250 additional 
populations sampled. The asymptotic power differed among sys-
tems and was dependent on the original posterior distribution, i.e., 
the portion of the distribution below zero defined the probability 
that the system was declining, which therefore formed the theoretical 
asymptote as sampling increased to infinity. Furthermore, portions of 
the distribution near zero would take increasingly large population 
sample sizes to report with confidence that they were declining, and 
thus, the approach to the theoretical asymptote could be slow.
Modified threshold for evaluation of conservation outcomes
A second way to address uncertainty is to allow the detection of trend 
improvements by simply accepting a lower threshold of certainty. 
For instance, if we set our threshold of certainty to 70% that conser-
vation action has resulted in an improvement in population trends, 
we could detect improvements in roughly half (32) of the country/
taxon systems with 80% power with ~250 populations sampled, and 
49 of 62 systems had >80% power when 4000 populations are sampled. 
However, 10 country/taxon systems still had power less than 50%, 
with some declining to zero (Fig. 5A and table S4). Again, this result 

reflects the high initial uncertainty, driven in part by the low number 
of currently sampled populations.
Setting a “reference” threshold for evaluation of 
conservation outcomes
Last, a third practical solution is to compare post-policy trends to a 
reference threshold of decline, rather than establishing whether 
improvements in the trend have occurred. In this case, power would 
no longer be limited by current levels of uncertainty. For a concrete 
example, we may want to determine the power to be 70% certain 
that populations are doing better than a threshold of 1.5%/year 
mean decline, given that a policy reduces the true mean decline to 
zero (Fig. 5B). We find that we would be able to eventually detect 
that populations met this criterion (in contrast to Fig. 3), although 
in some systems, it would require thousands of populations to be 
sampled. For instance, given their high background levels of variation, 
mammals and birds in Australia and fish in Taiwan and Romania 
had the lowest power (<71%), even with 4000 populations sampled 
(table S4). In contrast, these systems all had >90% power with option 
2 (i.e., comparing against the current trend, with 70% certainty that 
an improvement had occurred), because the current empirical decline 
in those systems is much greater than the reference threshold used 
of 1.5%/year. These results illustrate that different options may be 
optimal for different systems.
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Fig. 3. The probability of detecting an improvement. The probability of detecting change after the implementation of conservation action, which changes the mean 
decline to zero (assuming that current variances of distributions are maintained), is the underlying basis of the biodiversity-change power analysis. The systems where 
power increases quickly are those that had >95% certainty of decline before action. The others asymptote at zero, i.e., additional sampling improves the resolution of 
trends post-action, but the ability to detect that an improvement has occurred is limited by the original uncertainty. Each line represents a system (populations separated 
into taxonomic group by country). We show the 62 systems with estimated mean declines >1.5%/year in the current data from the LPD (see tables S1 and S2 for details). 
We highlight five systems (using different colors) showing different outcomes discussed in the text (see also Fig. 4).
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DISCUSSION
The GBF is built on a theory of change articulating the implementation 
of the knowledge and action needed to reverse current biodiversity 
trends and result in society living in harmony with nature by 2050. 
Our analyses of statistical power to detect change in population 
trends suggests that in many countries and for certain taxa we may 
not be able to tell whether our conservation actions are achieving 
the reversal of declining trends desired [“bending the curve,” (18)] 
by the goals and targets of the GBF. This uncertainty arises because 
of the high variability in trends estimated to date and our incomplete 
knowledge of these trends given current available data. There is no 
immediate fix for this background level of uncertainty, but the inter-
national community can invest in monitoring to assess current trends 
and rates of change to guide progress toward the goals of the GBF 
between now and 2030 and 2050.

The monitoring framework of the GBF guides countries with the 
task of acquiring the data and calculating the indicators needed to 

assess their progress toward the goals arising from their actions 
across the 23 targets. We show that while data and an indicator of 
trend change are necessary, they are not sufficient to establish the 
degree of progress toward the goals. The monitoring framework must 
offer guidelines on how countries can establish with confidence that 
biodiversity change is occurring because of conservation action and 
doing so fast enough to meet the targets set for the goal.

Four recommendations for the monitoring framework
The text of monitoring framework (paragraph 7, COP decision 15/5) 
invites organizations, including the Group on Earth Observations 
Biodiversity Observation Network, to support the operationalization 
of the monitoring framework for the Kunming-Montreal GBF. We 
thus propose four options to inform the operationalization of the 
monitoring framework and to help countries assess their progress 
by finding ways to overcome the constraints imposed by current 
data availability. This guidance is focused on the two main objectives 
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Fig. 4. Sampling required to increase power to detect current declines. One potential solution for improving power to detect trend improvements due to conserva-
tion action is to reduce uncertainty about the current trends (i.e., improve the baseline for comparison), given that this is the factor limiting trend change assessment. With 
250 additional populations sampled, power for most systems levels off. Each line represents a system (country-taxon combination). We highlight five systems (using dif-
ferent colors) showing different patterns discussed in the text (see also Fig. 3). See table S3 for additional details.
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of this study: to (i) assess current abundance trends, with a focus on 
uncertainty (i.e., given existing data), and (ii) assess whether we are 
likely to be able to detect future changes in trends (i.e., setting targets 
before data collection). The first recommendation corresponds to 
objective 1, and the next three recommendations are context dependent 
but provide potential solutions for objective 2, given our finding that 
it may be difficult to detect improvements after conservation action.
Interpret trends using a risk framework
We propose the adoption of a risk framework. While only 11 systems 
were severely declining with 95% certainty, given the potential ram-
ifications of widespread biodiversity loss, it seems appropriate, 
under the precautionary principle (19), to also consider lower proba-
bilities of certainty. This should encourage an explicit discussion of 
acceptable levels of risk that parties to the GBF are willing to accept. 

This will have implications for the strategic investment in resources 
(cost and efficacy) dedicated to recovery of species and the protection 
and restoration of their habitats. Biodiversity science can implement 
criteria like those used in climate science to evaluate the weight 
of evidence for detecting and attributing climate trends and the 
levels of acceptable risk associated with trends estimates (in) consistent 
with policy outcomes (8, 20).
Improve current trend estimates with additional monitoring
There is great value in allocating resources to continue monitoring 
“status quo” trends (i.e., populations not benefiting from GBF inter-
ventions), given that current levels of uncertainty are a key limiting 
factor to evaluate our progress toward biodiversity goals. Because 
we also want to implement biodiversity strategies as soon as possible, 
a monitoring framework could entail “experiments,” wherein some 
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Fig. 5. Modified threshold for evaluation of conservation outcomes. Two potential solutions for power analyses to allow trend improvements to be detectable are by 
(A) reducing the threshold of certainty to conclude improvements in trends compared to pre-policy baseline (e.g., using 70% credible intervals) or (B) testing post-policy 
trends against a fixed reference threshold (e.g., 1.5%/year decline). Figure shows the fraction of the 62 systems analyzed, which reached a given level of power (different 
colored lines), as the number of populations sampled increases (see table S4 for details).
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populations are managed under status quo conditions and monitored, 
thereby increasing the sample size and reducing uncertainty of current 
trends, while management intervention improves the condition of 
populations in the remainder of the system (to maximize the proba-
bility of achieving stated goals). An example that this approach can 
be effective is the large-scale construction of hundreds of new ponds 
that halted and reversed the decline in amphibian populations, in-
cluding Red-Listed species, in Switzerland (21).
Modify threshold for evaluation of conservation outcomes
We argue that it may be reasonable to set a lower certainty threshold 
to assess whether conservation action has resulted in trend im-
provements. Our results suggest that in many systems, we would 
not be able to conclude with 95% certainty that abundance trends 
have improved. However, it could be justifiable to conclude that our 
goals have (likely) been met if there is, for instance, a 70% probability 
that biodiversity has improved. Simply put, the quantitative outcomes 
for biodiversity that are chosen must be assessable to be valid, and 
these criteria should be stated a priori. This is required for the applica-
tion of an effective theory of change.
Use an absolute reference threshold for evaluation of 
conservation outcomes
A reference threshold of decline may be useful to be considered as a 
metric for evaluation. In this case, evaluation would not be affected 
by current levels of uncertainty; we would not be able to conclude 
that policies have resulted in any improvements but can at least 
conclude that systems are not declining beyond a certain rate. How-
ever, the number of populations required to conclude that even 
catastrophic declines are not occurring can still be large.

The choice from the mix of options we suggest will likely depend 
on the context. Some systems that are declining with high certainty 
would only require sufficient post-policy sampling to conclude that 
improvements are occurring. Others could show higher certainty in 
current trends with modest additional sampling, which would thus 
make it possible to detect improvements post-policy as well. Still, 
other systems could benefit from a mixture of strategies, improving 
current trends and requiring lower certainty to conclude success. For 
systems with very high uncertainty, one could switch to comparisons 
against a fixed reference threshold of decline. Last, while not analyzed 
here, additional predictors of decline could reduce uncertainty about 
trends and increase power. However, putative drivers of biodiversity 
loss do not always have the expected effects (22) and can often inter-
act over large geographic scales or have lagged effects (e.g., because 
of historical land-use legacies) on population trends (23). Regardless, 
we suggest jointly monitoring drivers and populations over time in a 
detection and attribution framework for biodiversity monitoring (8).

A GBiOS for reliable trend detection
While we present our analysis using real data from the LPD, these 
populations are likely a biased sample of change worldwide, which 
could affect estimated patterns of change over time for any given 
system. The exact consequences of this potential bias are generally 
unknown. More broadly, given that monitoring will likely always 
represent a sparse sample of the total geographical space, there is a 
danger that monitoring sites are not representative of where conserva-
tion actions are occurring. This could underestimate the overall 
change resulting from management, or perversely, one might focus 
conservation actions only on the locations that are monitored while 
assuming that actions are system-wide (thereby overestimating the 
overall benefit). Thus, while monitoring is critical to ensure that real 

progress is being made toward goals, it must be done carefully and 
rigorously.

A global biodiversity observing system [GBiOS; (24)] collecting 
data across a network of monitoring sites worldwide could be designed 
to fill the geographic and taxonomic gaps in our knowledge of 
biodiversity change and reduce uncertainties over time. Further, sys-
tematic sampling in GBiOS could help ensure that observed trends 
are representative of overall biodiversity changes.

Properly specified with assessable targets, an effective GBiOS would 
generate the data over a representative network of sites at the frequency 
and geographic scales needed to detect changes in population trends 
[and trends in other essential biodiversity variables, (25)] soon after 
they have begun to respond to conservation action. Monitoring by a 
GBiOS could follow the dual approach we suggest, with experiments 
managing some populations under status quo conditions to reduce 
uncertainty of current trends while implementing policy interventions 
for the remainder of the system (to maximize the probability of 
achieving stated goals). This approach would provide insight into 
how many populations need to be monitored under the status quo 
and establish the management effort needed to reach acceptable levels 
of recovery and certainty.

In this study, we assumed an idealized case where conservation 
action was effective immediately, and we found that detection would 
be difficult even in this scenario. The minimum time to detect 
change in population trends of a given magnitude is a particularly 
important issue for global biodiversity policy (26). If we are to succeed 
in the objectives of the GBF to reverse biodiversity decline, rigorous, 
systematic sampling, with full consideration of uncertainty and 
trend detectability, is crucial to determine whether our policies are 
having the intended effects or whether reorientation is necessary. 
The monitoring of biodiversity trends would be well supported by 
the establishment of a GBiOS designed explicitly to assess and guide 
progress to targets under uncertainty (24).

In summary, we addressed the problem of how uncertainty in our 
knowledge of existing trends in monitored populations constrains our 
ability to assess whether conservations goals will be achieved globally 
in the coming decades. For the case of global trends in population 
abundances, this is the probability of achieving a reduction in the 
average rate of decline for the global distribution of threatened pop-
ulations, at an agreed upon point in the future (e.g., by 2030 or 
2050). We show that these goals should be considered carefully in 
the context of trend detection, given the uncertainty we have about 
current global average rate of declines. We provided four ways to 
make analyses more feasible. Below the global level, the same defini-
tion can be applied to rates of population change disaggregated to 
reflect progress country by country and taxon by taxon. Given that 
the effort and resources that will be invested in conservation will 
exceed hundreds of billions of dollars worldwide, it is important that 
we know whether our actions have been effective or, alternatively, 
when we should adapt our strategies to ensure that we are on course 
to achieve our biodiversity goals.

MATERIALS AND METHODS
A power analysis for trend detection
The probability of achieving a policy goal, given the environmental 
state of the world and the current sampling of populations, defines 
the efficacy of the conservation action. Our ability to detect progress 
with a given level of certainty is defined by a statistical power analysis.
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Power analysis for biodiversity trend detection has at least two 
scales—a local scale for trend change detection within a site and 
then at a regional (or global) scale where we assess the power to 
detect change in the aggregate distribution of trends across many 
sites or groups of populations. The task of detecting the change in 
any varying measure of biodiversity can therefore be characterized 
as a hierarchical statistical problem. We have many local sites exhi
biting fluctuations and trends over time that will vary from site to site 
because of heterogeneous effects of natural and human drivers. The 
statistical power will vary with the biodiversity indicator, the type of 
change we are looking for within and across populations, and the 
effect size of the conservation action.

Statistical power may be increased by reducing measurement error, 
increasing sample size (i.e., the length of time series or number of 
populations), or increasing the strength of conservation measures. 
We focus on calculating the sample size (i.e., the number of popula-
tions monitored and for which trends are estimated), assuming that 
sampling methods will reflect historical levels of accuracy, and addi-
tional sampling of populations will be constrained by the maximum 
7-year window before 2030. We make the simplifying scenario that 
conservation measures have successfully reduced the true mean rate 
of change to zero, but any other level of efficacy of conservation action 
could be used as well.

Estimates of current population trends
We analyzed population time-series data, by using the LPD (http://
livingplanetindex.org/data_portal). While the approaches we will 
discuss are applicable to any group of population trends, the LPD is 
arguably one of the most extensive compilations of time-series data 
publicly available, currently comprising >30,000 vertebrate popula-
tions from 1970 to 2018, and it illustrates many of the challenges 
associated with detecting improvements in trends. We focused on 
country-level analyses, given that goals of the GBF will be based on 
national-level reporting. We further broke analyses down by taxonomic 
class (fish: Actinopterygii, Elasmobranchii, Holocephali, Myxini, 
Chondrichthyes, Sarcopterygii, and Cephalaspidomorphi; birds: 
Aves; mammals: Mammalia; and herpetofauna: Amphibia and Reptilia, 
henceforth, termed "herps"), resulting in 488 country-taxa combina-
tions (henceforth, termed “system”). We restricted our analyses to sys-
tems with greater than 10 populations sampled, resulting in 198 systems.

We focused our analyses on general trends in each system and 
used the Bayesian hierarchical mixture model (BHM) to remove the 
extreme declining (and increasing) trends, which have been shown 
to comprise only a small fraction of populations (1.4%) but could 
have a pronounced effect (2). In the context of policy evaluation, a 
few extremes could mask detection of general improvements or, 
conversely, could result in apparent improvements even as most 
populations continue to decline. In addition, a Bayesian hierarchical 
approach also provides a measure of uncertainty as an outcome of 
analyses via the posterior distribution, accounting for intra-population 
fluctuations as well as inter-population differences in growth rates, 
and differences in the number of data points comprising the time 
series. Arguably, systems undergoing widespread declines are the 
most concerning, and thus, we focus on systems where the mean 
system-wide annual rate of decline was greater than 1.5%/year (if 
all populations continued at that rate, 50% would be lost over 
50 years).

We define parameters θ and τ as the system-wide mean and SD 
of log growth rates (after removing the extremes using the BHM), 

respectively, and σ was the SD of within-population fluctuations. 
Thus, we can specify the power problem in terms of whether im-
provements in the system-wide mean log growth rate (θ) would be 
detectable under the scenario where management actions reduced 
the true mean decline to zero (Fig. 1).

Risk assessment framework
Given the data from the LPD, there are high levels of uncertainty 
about the trends in the time series (based on 95% credible intervals), 
but this does not preclude the possibility that strong declines are 
occurring. Here, we highlight risk assessment as a useful framework, 
given its consistency with how we treat other disasters, and its natural 
relationship with Bayesian statistics. A risk framework accounts for 
both the severity of population decline and the probability (P) we 
are willing to accept that these trends are occurring.

We estimate the probability P by taking the proportion of the 
posterior distribution of θ with values less than some threshold of 
decline T. We considered both systemic declining trends (T = 0) and 
severe declines (set at beyond 1.5%/year, T = −0.015).

Effect of a biodiversity monitoring system
We begin with a model of how additional data will improve the 
certainty about current trends, because this is the more complete 
formulation; analyses of changes in trends (e.g., due to policy) is a 
special case of this model. We start with the posterior distributions 
based on historical data, which give us the probability that each 
parameter set [θ and τ, for mean and SD of log (growth rates) between 
populations, respectively] is “true,” from which all else can be derived. 
This allows us to do two things: (i) The posterior distribution acts as 
the new prior distribution (i.e., Bayesian updating) in the presence 
of new data, and (ii) while the true parameters are unknown, we 
know how probable they are from the original posterior distributions, 
and we know the distribution of additional data that would be gen-
erated for each possible parameter set (θ and τ).

We focus on the mean growth rates of a system (θ) and begin 
with the observed posterior distribution, taking the mean theta ( θ1 ) 
and SD of theta (s1), across all Markov chain Monte Carlo (MCMC) 
runs. This will become the prior, as we “collect” new data. We need 
to then determine what new data are likely to be collected and the 
updated (posterior) distribution, which is the outcome of the new 
data and the “Prior” distribution ( θ1 and s1). This requires several 
steps: The new data that are collected will be determined by the true 
generating distribution (which we can estimate up to a probability). 
Thus, we begin with each MCMC realization i (probability of “reality” 
as defined by θi and τi, for mean and SD of growth rates between 
populations, respectively). Second, each parameter set would theo-
retically result in a distribution of potential observations, in this case, 
the sample mean of growth rates ( x ), given the number of popula-
tions (p) and number of years (n) sampled for each population. Third, 
we calculate the effect of each value of x on the posterior distribution 
(denoted using subscript 2; i.e., θ2 and s2), thereby updating the 
original estimates θ1 and s1. Fourth, for each realization ( x ), we cal-
culate the credible intervals for the generated posterior distribution ( θ2 
and s2) and determine whether it exceeds some threshold (P) to con-
clude that a change has occurred beyond some threshold rate (T) 
(e.g., mean rate of decline is more than 1.5%/year). Fifth, we nor-
malize by the relative probabilities of occurrence of x , θ, and τ, to 
obtain an overall estimate of power, given all possible realizations. 
The exact formulation is as follows:
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First, for each given reality (MCMC run i, generating θi and τi), 
the variance of new data (s2

0,i) would be determined by the among-
population variance (τi) and within population variance (σ2). The 
distribution of sample means has

where p is the number of populations and n is the number of samples 
within populations. Given this variance s2

0,i
 , we can determine the 

probability of new sample means ( xi,j) for each parameter set θi and 
τi, which would be generated following the distribution

In the next step, for each realization xi,j , we can analytically calculate 
the updated posterior distribution for θi,j, which has a variance

As sample size increases, s2
0,i

 becomes smaller and the new samples 
dominate the signal; at its limit, s2

2,i
= s2

0,i
 . When no additional samples 

have been collected, s2
2,i
= s2

1
 and mean

With these two values, we can then determine the probability (i.e., the 
proportion of the posterior distribution) beyond a threshold T.

where Z is the standard normal deviate, and Pr(Zi,j) is the fraction of 
the posterior distribution less than T.

Last, we calculate the overall chance of observing a decline (D) 
across all possible scenarios by integrating across all values of x , 
θ, and τ.

where f (x ∣ θ, τ) is the normalized probability density for observing x , 
and P is a threshold probability (analogous to a credible interval) of 
being worse than the threshold decline of T (e.g., if T  =  0, and 
P = 0.95, which would indicate that there was a 95% chance that the 
trend was declining).

Detecting improvements compared to current trends
We can modify the model above and conceptualize detecting change 
as an additional parameter (θd) for data collected after a policy inter-
vention. Specifically, if policy results in an improvement, θd should 
be greater than zero, with a certainty based on the credible intervals 
(e.g., a one-tailed 95% credible interval). In notation, the likelihood 
across all populations could be described as

where d is a dummy variable: d = 1 corresponds to new data, d = 0 
corresponds to the original data, and s is the SD of x.

For power analyses, we can use Eqs. 1 and 2 again from the poste-
rior distribution to determine the new data that would be generated 
probabilistically, except that we replace θi in Eq. 2 with the “alternative 
hypothesis” value (A) (i.e., effect of the given policy). We assume 
that the variation remains unchanged using Eq. 1. In notation

Since data points are independent, it is equivalent to combining 
two independent likelihoods. Thus, the posterior distribution of θ1 
would be the same as from the original pre-policy data, and the pos-
terior distribution of θ2,i,j would be the same as if it were calculated 
only for the new data ( xi,j ). For each simulated sample mean (Eq. 8), 
using a flat prior, the mean (θ2,i,j) and variance ( s2

2,i
 ) of the posterior 

distribution would be

Thus, to determine the probability of detecting an improvement 
compared to the current population trends, we need to determine 
the distribution of θd, which can also be calculated using the distri-
bution of differences: For each xi,j , the mean of the posterior distri-
bution of differences would be

and the posterior variance of θd would be the sum of the individu-
al variances

The credible intervals become simple to calculate then, and will fol-
low a Z distribution

From this, we can calculate the probability of detecting an im-
provement at a threshold of confidence P by integrating across the 
posterior distribution of variances (τ) used to generate samples (the 
alternative mean A was chosen and constant), and the distribution 
of realizations ( x ∣ τ ). In notation

where Φ indicates the power to detect improvements and is dependent 
on the choice of the alternative mean A, the number of populations p, 
the number of estimates per population n, the within-population 
fluctuations, the posterior distribution of variances τ, and the pre-
policy posterior distribution of means θ1.

Detecting improvements compared to a reference threshold 
of decline
As a final analysis, we calculated the probability of detecting that the 
trends after policy (A) are better than some prespecified reference 

s2
0,i
=

τ
2
i
+

σ
2

n

p (1)

xi,j ∽N(θi , s0,i) (2)

s2
2,i
=

1
1

s2
1

+
1

s2
0,i

(3)

θ2,i,j = s2
2,i

(

θ1

s2
1

+

xi,j

s2
0,i

)

(4)

Z
i,j
=

T − θ
2,i,j

s
2,i

(5)

D=� � � f (x ∣ θ, τ)pr(θ, τ)∗

{

1 ifPr(Z)≥P

0 ifPr(Z)<P

dxdθdτ (6)

L =

∏

N[x ∣ (θ
1
+ dθd), s] (7)

xi,j ∽N(A, s
2

0,i
) (8)

θ2,i,j = xi,j (9)

s2
2,i
=

τ
2
i
+

σ
2

n

p (10)

θd,i,j = θ2,i,j − θ1 (11)

s2
θd ,i

= s2
θ1
+ s2

2,i (12)

Zi,j =

θd,i,j

s
θd ,i

(13)

Φ=� � f (x∣τ)pr(τ)∗

{

1 ifPr(Z)≥P

0 ifPr(Z)<P

dxdτ (14)
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threshold level of decline (T). In this case, we do not need to consider 
the uncertainty in θ1 within the current trends (but we still use the 
posterior distribution of τ to generate values of between-population 
variance, Eq. 8) and can focus solely on the distribution of new data 
(Eqs. 9 and 10).

We replace Eq. 13 with Eq. 15 and evaluate using Eq. 14.

Supplementary Materials
This PDF file includes:
Tables S1 to S4
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