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Abstract. While generality is often desirable in ecology, customized models for individual
species are thought to be more predictive by accounting for context specificity. However, fully
customized models require more information for focal species. We focus on pest spread and
ask: How much does predictive power differ between generalized and customized models? Fur-
ther, we examine whether an intermediate “semi-generalized” model, combining elements of a
general model with species-specific modifications, could yield predictive advantages. We com-
pared predictive power of a generalized model applied to all forest pest species (the generalized
dispersal kernel or GDK) to customized spread models for three invasive forest pests (beech
bark disease [Cryptococcus fagisuga], gypsy moth [Lymantria dispar], and hemlock woolly
adelgid [Adelges tsugae]), for which time-series data exist. We generated semi-generalized dis-
persal kernel models (SDK) through GDK correction factors based on additional species-spe-
cific information. We found that customized models were more predictive than the GDK by an
average of 17% for the three species examined, although the GDK still had strong predictive
ability (57% spatial variation explained). However, by combining the GDKwith simple correc-
tions into the SDK model, we attained a mean of 91% of the spatial variation explained, com-
pared to 74% for the customized models. This is, to our knowledge, the first comparison of
general and species-specific ecological spread models’ predictive abilities. Our strong predictive
results suggest that general models can be effectively synthesized with context-specific informa-
tion for single species to respond quickly to invasions. We provided SDK forecasts to 2030 for
all 63 United States pests in our data set.

Key words: exotic; macroecology; multispecies; nonindigenous; risk assessment; simulation; spatially
explicit.

INTRODUCTION

Identification of generalized models that explain and
predict species distributions is of fundamental impor-
tance to ecologists. However, while general models “po-
tentially inform about phenomena that exist in many
systems. . .”, they “. . .may not necessarily make good
predictions about any individual system” (Evans et al.
2013). This tension between generality and context
specificity underlies much of ecology.
The trade-off between generality and ecological pre-

diction also exists within invasion biology, where the
focus has been on species-specific models using context-
specific information (Liebhold et al. 1992, Gilbert et al.
2004). For instance, the spread phase, a fundamental
part of the invasion process, has typically relied on

customized models, accounting for life history, ecologi-
cal complexity and spatial factors such as dominant
wind direction and habitat suitability (Liebhold et al.
1992, Koch and Smith 2008, Kovacs et al. 2011). Intu-
itively, models that are based on a particular invasive
species’ local context should provide better predictions
than general models and should facilitate management.
For instance, the gypsy moth Slow-the-Spread (STS)
project in the United States has reduced spread rates by
>70%, since its inception in 2000, (Sharov et al. 2002,
Grayson and Johnson 2018; see also Slow Ash Mortality
[SLAM] program; McCullough and Mercader 2012).
While customized models have undeniably been useful,

there have been calls for pathway-level analyses, which
account for multiple invasive species simultaneously
(Lodge et al. 2006, Bradie and Leung 2015). For invasive
species, one phenomenon that supports such cross-species
generality is the dominant role of humans in transporting
species via mechanisms that are analogous across entire
suites of species invading different spatial locations (e.g.,
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through ballast water transport [Seebens et al. 2015], fire-
wood transport [Haack 2006]). We hypothesized that,
across invasions, unique natural dispersal processes are
commonly overridden by anthropogenic ones, and that
predictable generalities that operate across entire suites of
species arise as a consequence of these processes’ broad
effects (Hudgins et al. 2017). In the case of post-establish-
ment spread, anthropogenic mechanisms such as trans-
port through road networks may mean that conventional
ecological processes governing dispersal, which are more
idiosyncratic across species (wind direction, flight ability,
etc.; Aylor 1990, Taylor et al. 2010), are less important
for forecasting spread at large scales. Further, species
traits relating to association with anthropogenic dispersal
vectors may be most important in determining their
spread rates. This anthropogenic dominance can thus
provide us with general macroecological predictions for
the spread of groups of invasive species within a particu-
lar transport network.
Although general invasion models are in the minority,

the interest in multispecies predictions for the spread of
invasive species arises because of their potential advan-
tages. In order to prepare for and limit invasive species
impacts across space, which accrue immense costs (Vil�a
and Hulme 2017), managers need to know where these
species will invade next. Further, the sooner they can
take action, the more effective their control measures
will be (Lovett et al. 2016). The lower the data require-
ments of a given model, the sooner it can be imple-
mented to inform management. As such, a highly
general model could be rapidly applied to many species,
potentially including species that have not yet estab-
lished. Thus, in summary, there are potential benefits
from using a general model and logical reasons to expect
generality in the spread of invasive species.
Applied ecological models can be viewed along a con-

tinuum from specific to general. At the specific end of
the spectrum, structure, predictors and parameters may
all be fit to each separate species (i.e., customized mod-
els). At the most general end, a model may be applied to
many species, using the same model structure, predictive
factors, and parameters. In the middle of the spectrum,
parameters can be added or rescaled to different values
within a generalized model “backbone” in order to
incorporate additional layers of customization (we term
these “semi-generalized models”), without the collection
of as much species-specific data (e.g., time series for each
species). These intermediate models can be worthwhile
to consider, if the reduction in generality is offset by a
large gain in predictive ability. Additionally, semi-gener-
alized models that do not rely only on single-species data
could conceivably make better predictions relative to
customized models, if there are strong commonalities in
the spread process across species (e.g., human-mediated
vectors), since they are able to “borrow” information
from a broad pool of species.
In this paper, we compare a suite of models with

varying levels of generality in terms of their ability to

predict the spread of invasive forest pests. For context
specificity, we designed customized single-species mod-
els for three pest species for which time-series data
exist (beech bark disease (Cryptococcus fagisuga),
gypsy moth (Lymantria dispar), and hemlock woolly
adelgid (Adelges tsugae), using species-specific predic-
tors and functional forms (Liebhold et al. 1992, Morin
et al. 2007, 2009). These were compared against a gen-
eral model fit across all forest pest species currently
known in the United States, using a previously pub-
lished generalized dispersal kernel (GDK) (Hudgins
et al. 2017). At the intermediate level, we examined
whether we could use GDK as a starting point, and
incorporate species-specific knowledge (semi-general-
ized models, SDK), and whether doing so improved
predictions compared to GDK and customized
models.

MATERIALS AND METHODS

Dispersal kernel formulation

Dispersal kernels estimate the probability of pest
dispersal across space based on the distance, d,
between source and destination locations (Kot et al.
1996). In the GDK, we moderated dispersal though
spatial predictors affecting the dispersal kernel. We fit
our model using discrete time simulations, where at
each time step, pests dispersed to surrounding patches
according to

Ti; j ¼ e�di; j; f Zð Þ
P

j e
�di; j; f Zð Þ (1)

f ðZÞ ¼ 2a
eðZSþZIþZOÞ

ð1þ eðZSþZIþZOÞÞ (2)

where Ti,j is the proportion of pests dispersing from
cell i to cell j, normalized such that the value of the
dispersal kernel across all locations j sums to 1 (de-
nominator of Eq. 1), di,j is the distance between sites i
and j, and f(Z) is a combination of all fitted species
(ZS) and cell (dispersal into a cell = ZI, dispersal out
of a cell = ZO) specific predictors influencing the dis-
persal probabilities, scaled to have a mean value of a
(i.e., dispersal occurs at rate a for sites with predictor
variables at their mean levels). For the GDK, our dis-
tributional data were limited to each species’ final dis-
tribution at the end of the fitting period, plus data on
their reported first year of establishment in the United
States.
The GDK is made up of both a dispersal and a growth

component, where the relative propagule pressure in cell
i at time step t + 1 is equal to the relative propagule
pressure at time t, minus emigration to all cells j, plus
immigration from all cells k, multiplied by the growth
rate d:
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Xi;tþ1 ¼ ðXi;t �
X

j

Ti; jXi;t þ
X

k

Tk;iXk;tÞd: (3)

Cells are considered “presences” capable of being a
source of propagules when they are above a threshold
population size / with a maximum relative propagule
pressure in a cell of 1. We assumed that cells that were
invaded remained invaded.
For the GDK, we considered predictors, including

propagule pressure proxies, habitat invasibility proxies
and pest life history traits (sources fully described in Hud-
gins et al. [2017]). The best-fitting model retained four
predictor variables, wherein sites with greater forested
land area and human population density are attractors to
invasive pests, and sites with greater tree density and
human population density are sinks from which pests do
not disperse as much, relative to sites with lower values of
these predictors. We modeled 5-yr time steps, to achieve
finer-scale forecasting (the original model used 10-yr
steps, but was shown to be robust; Hudgins et al. 2017).

Allowing context specificity

We designed customized dispersal models for each of
three highly damaging invasive forest pests: beech bark
disease (BBD), gypsy moth (GM), and hemlock woolly
adelgid (HWA; Fig. 1). BBD is a disease complex made
up of the introduced beech scale insect C. fagisuga and
(most likely native) fungi (one of two species of Neonec-
tria) first detected in Halifax, Nova Scotia in 1890, with
potential additional introductions around Boston and
New York City (Houston 1994). GM is a highly poly-
phagous (i.e., having many host tree species) defoliator
introduced from France to Medford, Massachusetts
around 1869 (Liebhold et al. 1989). HWA is a sap-feed-
ing insect that was first detected in 1951 in Richmond,
Virginia (Ward et al. 2004). These species span three of
the four feeding guilds of the broader set of 63 species
used to fit the GDK (Appendix S1; included pathogens,
foliage feeders, sap feeders; missing borers; Hudgins
et al. 2017). While time-series data exist for emerald ash
borer Agrilus planipennis, its detection records begin in
2002, which was after our fitting year (2000).
Across the customized models, we tested the inclusion

of four additional levels of complexity compared to the
GDK: testing additional dispersal kernel shapes, pest
entry points, additional species-specific predictor vari-
ables, and time series of pest spread.
First, in addition to the negative exponential dispersal

kernel employed in the GDK, a leptokurtic kernel was
explored (sensu Kot et al. 1996):

Ti; j ¼ e�
ffiffiffiffiffi
di; j

p
f Zð Þ

P
j e

�
ffiffiffiffiffi
di; j

p
f Zð Þ

: (4)

Leptokurtic dispersal kernels allow for nonlinear
spread rates and increased dispersal to distant locations

(Shigesada et al. 1995, Kot et al. 1996). Spatial predictor
variables were analogously incorporated via Eq. 2, but
the leptokurtic kernel has more density in its tails and
therefore leads to a higher chance of long-distance dis-
persal. The dispersal kernel that resulted in the best
model fit was selected for each species separately.
Second, we simulated the best-known starting location

of each pest species (Ward et al. 2019) and the host cen-
troid as a starting point for each pest’s dispersal. While
the use of best-known starting points did not improve
the overall fit of the GDK (Hudgins et al. 2017), given
that these three species are some of the most well stud-
ied, these starting points are likely more reliable than for
other pests. If a starting location was not within our
known host range for a given pest (e.g., first detection in
an urban area), we chose the closest grid cell in the host
range. As with the dispersal kernel, the starting point
that resulted in the best model fit was chosen for each
species.
Third, we tested additional predictors mined from the

literature in our forward selection models. We tested fire-
wood and campground-related variables, which were fre-
quently included in spread models of gypsy moth
(Bigsby et al. 2011). We sourced these predictors from
the U.S. Census’ American Housing Survey (homes
fueled by wood, campground density, seasonal homes),
and tested for all three pests. Additionally, HWA is
known to be highly climatically limited, with high mor-
tality when exposed to low winter temperatures (Paradis
et al. 2008, Morin et al. 2009). We modeled climatic lim-
itation for HWA using minimum temperature of the
coldest month (bio6) from WorldClim (Fick and Hij-
mans 2017 ) (Appendix S2), and setting the pest density
to zero for any patch below a fitted threshold (climate
data available online).6 Any predictor that substantially
improved fit was included in the final customized model
for a given species.
Finally, the customized models were each fit to time-

series of species dispersal patterns, using historical dis-
covery records by county available for the above three
species, while the GDK was constructed using only the
final distributions (but many more species).

Semi-generalized models

For the SDK, we tested the inclusion of three addi-
tional layers of species-specific information that went
beyond the original GDK, but did not use time-series
information (in contrast to the customized models), as
these data are relatively rare. First, we utilized an “inter-
cept correction” to offset each single-species spread
trajectory such that it minimized fitted GDK residuals.
Second, we tested whether incorporating information on
the best-known initial invasion location improved
predictive ability for each pest. Third, we tested whether

6www.worldclim.org.
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incorporating information on a species’ known niche
limitations could improve our forecasts.

GDK intercept correction.—The earliest invasive spread
model is Skellam’s seminal work on reaction-diffusion
(RD, Skellam 1951). RD uses the physics of diffusion to
predict radial spread emanating from a single source,
where the size of the invaded range expands uniformly
over time (Shigesada et al. 1995), and is a core model in
theoretical ecology (Morin et al. 2007, 2009, Skuhrav�a
et al. 2007).
Theoretically, we recognized that the GDK spread

intercept (a) is related to the RD diffusion coefficient
(D), as it similarly acts to scale the relationship between
dispersal distance and probability (Appendix S3), and
hypothesized that, holding all spatial predictors con-
stant, this intercept could be rescaled to adjust species
spread, thereby improving forecasts. Using only the fit-
ted values of the GDK to forecast spread neglects addi-
tional information contained in the mismatch between
these fitted values and the observed distribution in the
fitting year. If GDK residuals reflect constant, unmea-
sured species-specific factors (such as probability of
uptake by humans, fertility rates, etc., that are difficult
to obtain for an entire community of species), account-
ing for these deviations in spread trajectories could

improve predictions. We thus refit the spread intercept
for each species, but otherwise maintained the propor-
tional relationship with other spatial predictors, and
general structure of the GDK previously fit (i.e., Eqs. 1,
2; with dispersal based on forested land area, human
population, and tree density as in Hudgins et al. 2017).
The data requirements for this adjustment are simply the
locations at one time-point in a species’ distribution,
something that is presently available for all known dam-
aging invasive pests.

GDK starting point correction.—Second, as one of the
simplest correction factors, we tested whether adding
information on our best estimate of a pest’s initial inva-
sion site within the United States improved the predic-
tions of our general model, when there is reasonable
confidence in those estimates. We note that such esti-
mates may not improve the predictions of all species if
the starting point is not well known, but as we have men-
tioned, all three of these species are well studied. For this
correction, we updated our GDK simulation to begin
spread from these sites rather than the host range
centroid.

Niche limitation correction.—Third, we tested the inclu-
sion of species’ niche constraints. While the first two
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FIG. 1. Historical spread patterns of the three focal species: gypsy moth (GM), hemlock woolly adelgid (HWA), and beech bark
disease (BBD). Older invasions are shown in yellow while more contemporary invasions are shown in blue. Known host distribution
is shown in beige.
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correction factors require very little context-specific
information, which is likely to be known for any future
invader, niche limitations are more idiosyncratic species
information. For one of our studied species, HWA, it is
clear that climatic limitation plays a strong role in limit-
ing its northward dispersal (Morin et al. 2009). Just like
in the customized models, we tested the addition of a
minimum temperature threshold for HWA persistence
(Appendix S2).
We chose the SDK corrections for each species that

maximized fit. Importantly, all three customizations
were added to the basic structure of the GDK, holding
all other fitted parameter values constant for all predic-
tor variables in the published model.

Data preparation

For the customized models, historical county-level
spread records were assembled for GM, HWA, and
BBD. Records of historical GM spread were obtained
from the United States Code of Regulations (Title 7,
Chapter III, Section 301.45) which annually designates
quarantined counties that are part of the “generally
infested area.” Federal quarantines do not exist in the
United States for BBD and HWA, however, similar
county-level records were obtained from other sources
(Morin et al. 2007, 2009). County records were overlaid
on a 50 9 50 km grid in order to control for county size,
where a detection anywhere in a grid cell was considered
a valid presence. Five-year time steps within historical
spread data sets with less than two new detections were
not considered in our spread models, because there are
inherent delays between the detection of pests in surveys
and the incorporation of that information into range
databases. These years likely correspond to times where
monitoring was not adequately performed (resulting in
minimal apparent spread even if new invasions were
occurring), and are not a good indicator of the spread
trajectory. Once these low-detection years were removed,
the number of independent fitting years for each species
was 15 for GM, 6 for BBD and 5 for HWA. All three his-
torical spread data sets included data beginning only at
the first date of multi-county range for each pest, but
dates of initial discovery/introduction are known for
each pest, so simulated spread was adjusted to include
the period between initial discovery/introduction to the
first record of multi-county spread. HWA was adjusted
from 1971–2005 to 1950–2005, GM was adjusted from
1902–2005 to 1865–2005, and BBD was adjusted from
1935–2005 to 1890–2005.

Customized model fitting

To maintain consistency with the GDK, a forward
selection procedure based on the same metric (the mini-
mum energy test, MET; Aslan and Zech 2005) and using
the same threshold for parameter inclusion (5 km) as in
Hudgins et al. (2017) was employed to build the

customized models. MET accounts not only for exact
spatial matches of predicted and observed presences
(similar to measures such as accuracy), but also appor-
tions better scores to “close”matches than presences pre-
dicted very far away from the observed presences (for a
further discussion of MET, see Hudgins et al. [2017]).
Rather than taking the average across 63 species, in the
customized models, this 5-km MET threshold was
applied on average across all fitting years for a single
species. We chose the best single-species forward selec-
tion model among the two dispersal kernel shapes and
two possible starting locations for each pest species. In
the case of HWA, the temperature threshold was applied
to all four possible customized models, to remain consis-
tent with the literature on niche limitation and to ensure
the methodology was comparable to the fitting of the
SDK.

Predictive validation metric

To explore predictive ability with greater ease of inter-
pretation, we derived a novel, simple pseudo R2 value,
based on optmatch, an algorithm originally used to
match treatment to control subjects in clinical trials (R
package optmatch; Hansen 2007). The optmatch tool
uses a global optimization approach to match two sets
of points, minimizing the total multivariate distance
between the sets. We wished to have a metric that takes
its maximum value when two distributions have the same
number of points, with the points in the correct spatial
locations.
We first used optmatch to perform a one-to-one

match between our predicted and observed presence
points for a given pest. Next, the leftover points caused
by differences in predicted and observed range size were
then used to penalize the distance score. To do this, we
assigned these leftover points the mean distance between
that point and all other points in the opposing distribu-
tion. We used the mean of this entire vector of distances
(optimal matching mean squared error, omMSE) and
converted it to a pseudo R2 (R2

om) by comparing the
observed omMSE value to a spatial null expectation,
using 10,000 random points from the host distribution
(Appendix S4).

Community forecast

We used the best-fitting SDK to forecast the distribu-
tion of all 63 pest species from 2005 to 2030. We used
the fitted MET score applied to each individual species’
snapshot of dispersal in 2005 in order to determine the
SDK layers to include for each species (intercept, start-
ing point, and niche limitation corrections where there
was evidence from the literature that they were neces-
sary, see Appendix S5). We reset pest distributions to
known distributions at 2005 (setting false absences to /,
false presences to 0, and maintaining the simulated
propagule pressure of true presence sites) before
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simulating spread using each species’ SDK parameters to
2030. We included projected human population estimates
from ProximityOne as an updated human population
predictor in the GDK-based models, which all included
this term (population estimates available online).7

To model uncertainty, we considered future climate
and human population size projections, and uncertainty
in fitted model parameters (see Appendix S6 for full
details). In brief, for climate change, we used rcp2.6 and
rcp8.5 climate scenarios from BIOCLIM, and for popu-
lation size, we used two scenarios based on the Shared
Socioeconomic Pathways: SSP3 or “Regional Rivalry,”
and SSP5 or “Fossil-Fueled Development” (Hauer
2019), representing the extremes for both climate and
population size, respectively. We note that there was only
evidence of climate limitations for two species, but we
nonetheless considered climate scenarios for complete-
ness (Appendix S5). For the parameter uncertainty in
the SDK model, we conducted sensitivity analysis, ran-
domly perturbing model parameters, and using the
threshold for parameter inclusion in our model fitting
process as our criterion to retain parameter sets (i.e.,
MET within 5 km of the best-fitting model). We exam-
ined the combined effect of uncertainty on the range of
predicted future pest richness.

RESULTS

Customized model selection and predictive validation

Customized models were highly predictive on average
(R2

om = 0.74), though predictions were weakest for HWA
(R2

om = 0.45). The best-fitting customized model had a
very simple functional form for each of the three species
(Table 1), with fewer predictors than the GDK. For
GM, only per capita income was important, showing a
negative effect on spread into sites. For BBD, the best
model included only an intercept term. In the HWA
model, which contained the minimum temperature
threshold, human population density displayed the same
relationship as it did in the GDK, increasing spread into
sites. In all cases, using the hypothesized initial introduc-
tion location as a starting point led to better fits than
using the centroid of the host range. For BBD, the lep-
tokurtic dispersal kernel fit better than the negative

exponential kernel, while the negative exponential out-
performed the leptokurtic model for HWA and GM.

GDK predictive validation

The strength of the uncorrected model’s predictions
varied across the three species, from being extremely pre-
dictive for GM (R2

om = 0.87), to highly predictive for
BBD (R2

om = 0.55), to more moderately predictive for
HWA (R2

om = 0.30). The uncorrected GDK overesti-
mated spread for these three species, but predictions
were still substantially better than random expectations
from our null model, and mean spatial variation
explained was R2

om = 0.57.

SDK model selection and predictive validation

The R2
om improvement ranged from 0.11 to 0.55

between the uncorrected GDK and the best SDK, and
from 0.03 to 0.40 between the customized model and the
best SDK for the validation year (mean SDK
R2

om = 0.91). The best SDK for BBD and GM included
the intercept and starting point corrections, and had
R2

om = 0.89 and R2
om = 0.98, respectively (Table 2).

HWA required a third level of complexity, where the
model with the starting point, intercept and niche limita-
tion corrections resulted in the best fit and had
R2

om = 0.85. For GM and BBD, corrected intercepts
were larger in magnitude than the uncorrected GDK
intercept, consistent with a reduction in spread extent.
Conversely, for HWA, SDK had a smaller intercept,
indicating a higher spread rate. However, this spread rate
was offset by pest mortality upon dispersal into the
northernmost parts of its range, thereby leading to a
lower extent of spread overall.

Model comparison: spatial details

Although the GDK retained moderate to high predic-
tive power, and performed similarly to the customized
model for GM, it was weaker than the customized models
for BBD and HWA. For GM, both the customized model
and the SDK explained over 92% of spatial variation in
pest distributions. However, while the customized model
performed well in terms of the R2

om, based on visual

TABLE 1. The best-fitting single-species models for hemlock woolly adelgid (HWA), gypsy moth (GM), and beech bark disease
(BBD).

Species Kernel / d a Predictor(s) MET (km) R2
om

HWA negative exponential 0.0020 2.48 2.93 human population (+ in) = 0.19; bio6 = �9.33°C 11.10 0.45
GM leptokurtic 0.0046 4.60 5.14 income (� in) = 1.19 9.82 0.92
BBD negative exponential 0.0008 1.27 1.37 NA 11.37 0.86

Notes: Predictor variables labelled “in” represent predictors of dispersal into sites. In all cases, the best model simulated spread
initiating at the most likely initial invasion of the pest rather than the centroid of the host range. Bio6 represents a fitted minimum
temperature threshold for HWA mortality, and NA indicates no additional predictors were included.

7 www.proximityone.com
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inspection, it produced spatial patterning incongruent
with the true pest distribution, likely due to its fitted rela-
tionship with income (Fig. 2, top left panel). The model’s
leptokurtic kernel and negative relationship with income
produce a discrete patch of invaded sites around South
Dakota and Nebraska. GM’s extensive host range could
allow incongruent distributions to have high R2

om if pre-
dicted distributions are of approximately the correct
range size and close geographically to observed distribu-
tions. In contrast, SDK predicted a distribution that over-
lapped with the observed distribution nearly entirely.
Both the SDK and the customized models performed well
for BBD, leading to a tight spatial match between its pre-
dicted and observed distribution. The HWA customized
model explained the lowest amount of spatial variation of
the three species (R2

om = 0.45), likely due to the increased
complexity of this species’ spread mechanisms (i.e., cli-
matic limitation), leading to an inability to capture the
southernmost part of the range without overpredicting to
the north. The customized model’s fitted temperature
threshold was quite low (~2°C lower than in the SDK),
resulting in only a small effect on restricting pest distribu-
tions. The GM uncorrected GDK overpredicted spread,
producing a distribution that included much of its
invaded range, but lacking climatic limitation in northern
areas. In contrast, the SDK no longer overpredicted
spread in the north, and also did not predict disjointed
jumps outside the observed distribution that the

customized model predicted (R2
om = 85%), but still did

not capture the southernmost distribution.

Forecasts

Using the optimal set of SDK layers for each of the 63
species (see Appendix S5 for details of SDK corrections),
our simulations project the distribution of pests at 2030 to
remain highly aggregated in the northeastern United
States, as it was in 2005, but pest species richness to
increase (Fig. 3a, b). Northern Minnesota andWisconsin,
western Montana and northern Idaho, parts of NewMex-
ico, and northern New England are predicted to have the
largest increase in local establishments by 2030 (Fig. 4,
regions B, C, E, F, K). Some smaller, more concentrated
areas of increase are also predicted (Fig. 4, regions A, D,
G-J). We predict very few new local establishments in the
middle of the country. The areas at high risk correspond
to high forested land and increasing human population
densities. New local establishments are especially high in
urban centers close to regions of high forested land area
(Fig. 4, dashed lines). However, some less populated areas
also see large increases in local establishments due to their
high amount of forested land (Fig. 4, solid lines).
The combination of uncertainties in climate change,

future population growth, and model parameters led to
strong regional variability across future pest richness pre-
dictions (Fig. 5). However, the northeastern United
States typically had the greatest number of relative estab-
lishments, indicating a consistent pattern of future spatial
risk despite uncertainty. The simulations that produced
the fewest novel local establishments were those from the
high human population growth scenario, given decreased
dispersal out of high population density sites. Scenarios
with the highest future spread had increased pest growth
rates and less preferential dispersal into high population
areas, leading to more even dispersal patterns across
space (see Appendix S6 for further discussion). The med-
ian range of predicted pest load was five species, but dis-
tinct regional differences were observed. The central
portion of the United States had the lowest uncertainty
(range of <5 pests), but was consistently predicted to have
low numbers of future local establishments. The western
United States had more moderate levels (~5–10 pests),
while the eastern US had the highest levels (~10–20 pests).
Some future hotspots were particularly variable (Regions
C, D, H in Fig. 4). Additionally, many of the high uncer-
tainty patches, which are particularly dense across the
eastern US, had not been identified as hotspots (Fig. 4),
indicating some potential for additional regions of high
future pest load that warrant managerial surveillance.

DISCUSSION

The performance of general versus single-species models

The customized models performed 17% better than
the GDK, averaged across our three case studies, with

TABLE 2. The results of the GDK validation for both
uncorrected and intercept-corrected models.

Species a MET (km) R2
om

Uncorrected
HWA 1.74 33.22 0.30
GM 1.74 41.26 0.87
BBD 1.74 110.01 0.55

Intercept-corrected
HWA 1.65 31.17 0.20
GM 2.25 8.94 0.98
BBD 3.95 10.13 0.87

Starting-point-corrected
HWA 1.74 32.14 0.73
GM 1.74 18.16 0.92
BBD 1.74 1.70 0.89

Starting-point, intercept-corrected
HWA 1.48 24.84 0.35
GM 1.61 2.55 0.98
BBD 1.78 1.35 0.89

Starting-point, intercept, climate-corrected
HWA 1.47; bio6 = �7.64°C 1.75 0.85

Notes: All GDK models have parameter values of forested
land area (+ in) = 0.53, tree density (� out) = 15.61, human
population density (+ in) = 0.16, human population density
(� out) = 0.32, threshold population size / = 0.00054, local
population growth rate d = 1.30. HWA, hemlock woolly adel-
gid; GM, gypsy moth; BBD, beech bark disease; GDK, general-
ized dispersal kernel; MET, minimum energy test. Bio6
represents a fitted minimum temperature threshold for HWA
mortality.
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74% spatial variation explained. While customization
showed a marked benefit, notably, the GDK was still
able to capture a respectable 57% of spatial variation in
spread, for these three species. Moreover, GDK’s predic-
tive ability may be substantially higher for most other
species: We note that HWA and BBD were much more
poorly fit by the uncorrected GDK than the majority of
species, while GM was fit better than average, and that
the magnitude of over or underprediction in the uncor-
rected GDK appears to predict forecasting ability
(Appendix S7). Thus, we expect the GDK’s average pre-
dictive ability to be between BBD (55%) and GM (87%).
While researchers have reasonably focused on cus-
tomized single-species models for prediction (Liebhold

et al. 1992, Koch and Smith 2008, Kovacs et al. 2011),
the GDK yielded useful predictions even without any
modification, and will be useful in situations where cus-
tomized models cannot be built, e.g., in the case of novel
invaders.

Comparing predictors in GDK versus customized models

We found different suites of predictors to be impor-
tant for single-species spread, and that fewer predictors
were important compared to the general predictors for
all species in the GDK.
The differences in predictors between the GDK and

customized models could have arisen due to two

GM HWA BBD

Customized

R 2
om = 0.92

GDK

= 0.87

= 0.98

Customized

= 0.45

GDK

= 0.30

= 0.85

Customized

= 0.86

GDK

= 0.55

= 0.89

Known host distribution Known 2005 spread Predicted 2005 spread

SDK SDK SDK

R 2
om R 2

om

R 2
om R 2

om R 2
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FIG. 2. A comparison of the predictive ability of customized (top row), uncorrected generalized dispersal kernel (GDK, middle
row), and semi-generalized dispersal kernel (SDK) models for gypsy moth (GM, left column), hemlock woolly adelgid (HWA, mid-
dle column), and beech bark disease (BBD, right column). Host presence is indicated in beige, predicted distributions after a fore-
cast (5-yr) are shown in red, and observed distributions are shown in blue. Areas of overlap between predicted and observed
distributions produce a darker red color due to the overlap of the red and blue colors.
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processes: (1) species specificity in spread mechanisms
or (2) differences in power across models to detect
predictors of spread. While there is likely some species
specificity in the predictors of spread, we also believe
that these differences reflect noisiness of single-species
data (i.e., power to detect predictors of spread), given
that the SDK was more predictive than customized
models, and used the same predictors as the GDK.
Arguably, the general model could “borrow” power
from numerous species, where spread processes are
partially consistent across species. The incorporation
of multispecies’ information has also allowed for
recent advances in analogous fields, such as species
distribution modeling, improving spatial predictions of
individual species occurrences (Fithian et al. 2015,
Leung et al. 2019).

Semi-generalized Dispersal Kernel approach

We explored the value of using the GDK as a basic
structure upon which to build models, adding context-
specific information where it was known. This yielded a
17% average improvement compared to the fully cus-
tomized model (and 34% improvement compared to
GDK). Both GM and BBD customized models were
already highly predictive, and SDK yielded modest
improvements (3% and 6%, respectively). However, for
HWA, by including the three additional corrections to
the GDK, SDK yielded a 40% increase in spatial varia-
tion explained (from 45% customized model to 85%
SDK). Well-documented biases exist in HWA’s spread
pattern to support the incorporation of niche limitations
(Paradis et al. 2008, Morin et al. 2009). Thus, we
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FIG. 3. Forecasted pest species richness from (a) 2005 (fitting year of SDK) to (b) 2030 generated by extending simulated spread
patterns for each species from the best-fitting SDK parameters.
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recommend integrating such context-specific informa-
tion into an SDK, following fitting protocols described
in this manuscript.
Given that spread models have previously been

parameterized using these same time-series data, it was

reasonable to expect that customized models would be
highly predictive across species. However, the cus-
tomized model for HWAwas only moderately predictive,
providing a cautionary tale that even models using the
best available data may not produce highly predictive
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FIG. 4. Newly predicted local establishments (for existing United States invasive forest pests) between years 2005 and 2030, cre-
ated by subtracting Fig. 3b from Fig. 3a. Areas of particular interest are labelled and dominant mechanisms promoting new inva-
sions are denoted with dashed vs. solid lines. A, Seattle, Washington region; B, northern Idaho and western Montana (includes
Kootenai, Nez Perce-Clearwater, and Flathead National Forests); C, northern Minnesota and Wisconsin (includes Kabetogama
state forest); D, Chicago, Illinois region; E, northern New England (Maine, New Hampshire, Vermont, and Massachusetts), where
blue represents the Boston, Massachusetts region; F, Pennsylvania and New Jersey; G, Chesapeake, Virginia region; H, Huntington,
West Virginia region; I, Saint Louis, Missouri region; J, Monroe, Louisiana region (includes Upper Ouachita National Wildlife
Refuge); K, Carson and Gila National Forests, New Mexico.
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FIG. 5. Projections of combined SDKuncertainty at 2030 (range of predicted pest richness at each site) arising from two climate
change scenarios (rcp2.6 and rcp8.5 BIOCLIM scenarios), two alternative population growth scenarios (SSP3: “Regional Rivalry”,
SSP: “Fossil-fueled Development), and from a sensitivity analysis of model parameters (see Appendix S6).
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forecasts. It may be that the quality of data is too poor
to build single-species models, in some cases. On the
other hand, it appears that a snapshot of a species distri-
bution, a known initial invasion location, and when nec-
essary, a known niche limitation, synthesized with a
semi-generalized model (SDK), can outperform the
best-fitting customized model.

Forecasts of future invasion risk

Our simulations suggest future invasions to be even
more aggregated in space. Urban centers, areas of high
forest cover and tree density appear to be large-scale
attractors of invasive propagules from all sources (sensu
Colunga-Garcia et al. 2010, Gaertner et al. 2017). Sur-
prisingly, in the GDK, these attractors do not send out
as many propagules as other sites, leading to fewer sur-
rounding invasions than if they were also major sources
of propagule pressure. Instead, invaders arrive at these
sites (sometimes up to 15–20 new pests in the next 25 yr
in areas like Chicago, Illinois and Boston, Mas-
sachusetts), and remain there, perhaps due to a lack of
favorable conditions elsewhere.
While new establishments driven by population den-

sity such as Boston, Massachusetts and Chicago, Illi-
nois are relatively unsurprising “hotspots” of future
pest load, those driven by forested land, such as Che-
sapeake, Virginia, western Montana and northern
Idaho, and the national forests of New Mexico, are
less obvious. Many of these regions coincide with
National and State Forests and National Wildlife
Refuges, highlighting the role of forested land in the
dispersal model. Moreover, areas such as Northern
Minnesota and Wisconsin are projected to be the lar-
gest “hotspot,” possibly reflecting historically low num-
bers of establishments and hence a lack of saturation
in comparison to the northeastern United States or the
Midwest. These results indicate a high risk of spread
into Canada in the Great Lakes region, and may sup-
port a management regime that prioritizes limiting
propagule entry to these hubs, though an explicit anal-
ysis of the consequences of this prioritization requires
further study.
We note that while the intercept and niche correc-

tions can only be employed once a species begins
spreading and has a substantial enough distribution for
these limitations to be fit, the starting point-corrected
GDK can be used as a first pass to predict invasion risk
of new invaders from likely points of entry, as the only
information it requires is an estimated initial introduc-
tion location. If the pest does successfully establish, an
SDK combining additional corrections based on model
fit can more closely hone in on its future trajectory. For
species with well-known niche limitations such as
HWA, niche limitations can be similarly incorporated
by maximizing SDK fit to the observed distribution,
once distributional information is available, as we have
done here.

Caveats and limitations

As detailed above, even with our best current models,
there is substantial uncertainty in future pest distribu-
tions, given available data. Intuitively, such uncertainty
will commonly occur, and we argue that invasive species
models should be validated using temporal data with-
held from fitting, where possible.
Our model was based on current and historical condi-

tions. However, climate change could alter environmen-
tal suitability either due to its direct influence on the
invading species or indirectly via effects on hosts and
other species (Hellmann et al. 2008, see Appendix S5 for
additional species with climatic limitations). However,
we note that much of the Northeast, Midwest, and cen-
tral United States is predicted to have colder minimum
winter temperatures with climate change, even if mean
temperatures are predicted to increase (Appendix S3),
which will lead to more complex future spread dynamics
for temperature-limited species. According to the SDK,
HWAwill be even more constrained with climate change
(Appendix S3). Spread could also be affected by condi-
tions becoming hotter or more humid with climate
change, potentially affecting GM (Tobin et al. 2014,
though these limitations might improve GM forecasts by
only 2% based on our analyses). Fortunately, the SDK
can easily parameterize any type of spatial limitation for
any pest (though these can only be validated using time-
series information), and can thus incorporate future
knowledge of pest distributional thresholds.
The validation set used in this analysis was not a ran-

dom selection of species. Instead, it included the three
species with time-series data, for which comparative
analyses of general vs. customized models could be con-
ducted. It was notably useful from an applied perspec-
tive, as they represent some of the most damaging
invasive forest pests (Aukema et al. 2011). Emerald ash
borer has caused more damage than these species, but
was not included in this analysis due to its short invasion
history. Further, while fine-scale spatiotemporal GM
data are available from pheromone trapping, we applied
the GDK to new detections at the 50 9 50 km grid scale
in 5-yr time steps, which represent a much coarser spa-
tiotemporal dispersal pattern. To account for the finer-
resolution dispersal, a second sub-model could be
developed for small-scale dispersal and integrated into
country-scale model (although such data do not pre-
sently exist for species other than GM).

CONCLUSION

While customizing models for each species based on
their ecological context yielded 17% higher predictive
power compared to the fully generalized GDK, combin-
ing both into the SDK yielded the most powerful
approach, outperforming the customized model by an
additional 17% of spatial variation explained. These
results show that the spread process has a substantial
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component that is generalizable, and that this generality
can be effectively synthesized with context-specific infor-
mation. The SDK is a strong predictive tool to examine
the future distributions of these pests, which we predict
are becoming increasingly aggregated at urban centers
and are beginning to invade less populated areas with
high numbers of trees. These forecasts can aid in estimat-
ing future damages due to invasive forest pests, and will
be helpful in optimizing future management by high-
lighting areas of high future pest risk.
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