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Abstract 25 

In order to efficiently manage non-indigenous species (NIS) predictive tools are needed to 26 

prioritize locations where they are likely to become established and where their impacts will be 27 

most severe. While predicting the impact of a NIS has generally proved challenging, forecasting 28 

its abundance patterns across potential recipient locations should serve as a useful surrogate 29 

method of estimating the relative severity of the impacts to be expected. Yet such approaches have 30 

rarely been applied in invasion biology. We used long-term monitoring data for lakes within the 31 

state of Minnesota and artificial neural networks to model both the occurrence as well as the 32 

abundance of a widespread aquatic NIS, common carp (Cyprinus carpio). We then tested the 33 

ability of the resulting models to (i) interpolate to new sites within our main study region, (ii) 34 

extrapolate to lakes in the neighboring state of South Dakota and (iii) assessed the relative 35 

contribution of each variable to model predictions. Our models correctly identified over 83% of 36 

sites where carp are either present or absent and explained 73% of the variation in carp abundance 37 

for validation lakes in Minnesota (i.e. lakes not used to build the model).  When extrapolated to 38 

South Dakota, our models correctly classified carp occurrence in 79% of lakes and explained 32% 39 

of the variation in carp abundance. Variables related to climate and water quality were found to be 40 

the most important predictors of carp distribution. These results demonstrate that ecological niche-41 

based modeling techniques can be used to forecast both the occurrence and abundance patterns of 42 

invasive species at a regional scale. Models also yielded sensible predictions when extrapolated to 43 

neighboring regions. Such predictions, when combined, should provide more useful estimates of 44 

the overall risk posed by NIS on potential recipient systems. 45 
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Introduction 49 

Non-indigenous species (NIS) are an increasing management priority for governments 50 

worldwide owing to their potential to cause severe ecological and economic impacts. The 51 

ecological effects of invasive species can range from modifications in ecosystem function and 52 

community structure to the extirpation or extinction of native species (Lodge 1993, Clavero and 53 

Garcia-Berthou 2005). Consequently, NIS are currently recognized as a major threat to 54 

biodiversity (Chapin et al. 2000). To mitigate this global problem, many ecologists are aiming to 55 

develop tools that enable predictions regarding the invasion process.  56 

Environmental conditions have frequently been used to assess the potential for NIS to 57 

establish in new geographic locations (e.g. Zambrano et al. 2006, Herborg et al. 2007, Kilroy et al. 58 

2008). Such predictions are founded in Hutchinson’s (1957) classical niche theory, which states 59 

that species distribution patterns are governed by a discrete set of ecological conditions delineating 60 

the areas in which a given species can establish and maintain populations at particular densities 61 

(Peterson 2003, Araujo and Guisan 2006). As such, ecological niche-based modeling (ENM) 62 

techniques, which relate various aspects of species distribution to biologically relevant 63 

environmental variables, have become valuable tools for forecasting biological invasions (Peterson 64 

and Vieglais 2001). 65 

ENM approaches are typically used in invasion biology to predict the presence and absence 66 

of certain NIS or to estimate the probability of their establishment at particular sites (i.e. 67 

invasibility) (e.g. Buchan and Padilla 2000, Ficetola et al. 2007). Yet risk assessments of greater 68 

management value would be achieved by estimating both the probability of establishment and the 69 

severity or magnitude of the impact resulting from the invasion. Unfortunately, the factors that 70 

determine the effects of introduced species on their recipient communities are the most poorly 71 

understood aspect of the invasion process (Parker et al. 1999, Byers et al. 2002). Furthermore, the 72 
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impact of any individual NIS can be context dependant and may vary greatly across invaded sites 73 

(Ricciardi & Kipp 2008), posing a challenge to prediction (Ricciardi 2003). Consequently, there 74 

have been few attempts to incorporate quantitative estimates of impact into risk assessment 75 

frameworks (but see Vander Zanden and Olden 2008).  76 

A simple concept drawn from the invasion literature suggests that the severity of the 77 

impact caused by an introduced species is largely a function of its abundance at the invaded site – 78 

in general the higher the local density, the greater the impact (Parker et al. 1999, Ricciardi 2003). 79 

This intuitive principle is supported by both experimental and observational evidence for 80 

numerous NIS (Madsen 1998, Ruiz et al. 1999, Chumchal et al. 2005, Ward and Ricciardi 2007, 81 

Pintor et al. 2009) and in the absence of more suitable metrics, various measures of invader 82 

abundance (e.g. density, biomass) have occasionally been employed as surrogate measures of 83 

impact (e.g. Marchetti et al. 2004). According to niche theory, the abundance patterns of 84 

introduced species should also relate to various environmental conditions at potential recipient 85 

locations. Thus, we should be able to use ENM approaches to predict abundance, in addition to 86 

more coarse metrics of distribution – such as presence and absence (VanDerWal et al. 2009). 87 

However, the factors and processes that mediate the abundance of a species may differ from those 88 

that determine its occurrence or establishment success (e.g. Ramcharan et al. 1992, Neilsen et al. 89 

2005, Heinanen et al. 2008). We may therefore obtain a more comprehensive estimate of invasion 90 

risk by forecasting both the probability of establishment as well as the abundance patterns of NIS 91 

in newly invaded regions.  92 

Although this proposition is straightforward it has not been widely adopted in invasion 93 

biology, which has rarely used ENM to predict the abundance of introduced species at regional 94 

scales (but see Ramcharan et al. 1992, Koutnik and Padilla 1994, Wilson and Sarnelle 2002). Yet 95 

niche-based models for species abundance are frequently developed beyond the scope of invasion 96 
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biology, ranging from exploratory analyses of the organism-environment relationships (e.g. Lek et 97 

al. 1996, Wiley et al. 2004) to predictive applications intended for conservation and management 98 

purposes (e.g. Heinanen et al. 2008, Li et al. 2009). The distinction between invasion biology 99 

versus other fields of research is important, given their different objectives. In fields such as 100 

conservation biology, researchers often use ENM to predict species abundances or to explain the 101 

relationship between species distribution and various environmental factors within the same region 102 

where the model was parameterized. In contrast, given the nature of biological invasions, we are 103 

often most interested in extrapolating our predictions from ENM developed in one region to new 104 

geographical locations.  105 

In order to assess the utility of such models, their predictive power should be tested using 106 

data that reflect their intended purpose (Pearce and Ferrier 2000, Vaughan and Ormerod 2005). 107 

Yet, several authors have noted that a surprisingly large number of ENMs are only evaluated using 108 

the same data that were also used to fit the model (Araujo and Guisan 2006, Ozesmi et al. 2006). 109 

This can result in overly optimistic assessments of performance and highly inaccurate predictions 110 

(Fielding and Bell 1997, Olden et al. 2002). Where researchers have taken the next step and 111 

validated ENMs, they have typically done so by partitioning data from a single region into subsets, 112 

using one portion of the data to calibrate the model and using the remainder for validation. This 113 

approach allows for confident predictions at new sites within the same range where ENM was 114 

parameterized, which we term interpolation. However, models should also be evaluated using data 115 

that are spatially or temporally separated from those used for calibration in order to assess the 116 

ability to extrapolate predictions to new geographical areas or temporal horizons (Vaughan and 117 

Ormerod 2005). While the popularity of niche-based models in invasion biology is increasing, and 118 

there is often the implicit assumption that predictions can be applied to new locations, tests of 119 

extrapolation remain relatively rare. Further, as ENMs for forecasting the abundance of introduced 120 
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species are uncommon in the invasion literature, and given that such models have rarely been 121 

developed for similar predictive purposes in other fields, the ability to extrapolated model 122 

predictions to new geographic locations needs to be assessed. 123 

In this study we develop ecological niche-based models for predicting the occurrence as 124 

well as the abundance of a widespread vertebrate invader, common carp (Cyprinus carpio).  Using 125 

data for lakes within the state of Minnesota, we developed artificial neural networks to forecast 126 

these two aspects of carp distribution from several limnological and climatic variables. We then 127 

examined the accuracy with which our models were able to interpolate to sites within the main 128 

study region and extrapolate to independent data for lakes within the neighboring state of South 129 

Dakota. We also estimated the relative contribution of environmental variables to model 130 

predictions. By incorporating abundance as a surrogate metric for impact and examining the 131 

degree to which models for both the occurrence and abundance of a highly invasive species can 132 

extrapolate to new sites, this study assesses the viability of using ENM methods to more fully 133 

model the risk posed by NIS on their recipient communities. 134 

 135 

Methods 136 

Model organism  137 

Common carp was selected as a model species for this study owing to the availability of 138 

data regarding its distribution and impacts.  The common carp is native to Eurasia, but has been 139 

introduced across the globe both deliberately, for aquaculture, recreational and ornamental 140 

purposes, and unintentionally due to live bait release and other vectors (Balon 1995, Koehn 2004).  141 

Carp were first introduced into the United States in the late 1870s and were subsequently spread 142 

throughout the country, reaching the mid-west, including Minnesota, shortly after the initial 143 

introduction (Cole 1905).  The common carp is currently considered to be one of the world’s most 144 
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ecologically harmful invasive species (Lowe et al. 2004).  Its impacts arise mainly from the ability 145 

to alter aquatic habitats through high levels of excretion and by disturbing the bottom sediments of 146 

lakes and other waterbodies to which it had been introduced; often resulting in increased turbidity, 147 

degraded water quality and reduced macrophyte and benthic invertebrate densities (e.g. Zambrano 148 

and Hinojosa 1999, Parkos et al. 2003, Matsuzaki et al. 2007). Furthermore, the severity of these 149 

effects has been shown to be highly dependant on local carp biomass (Robel 1961, Crivelli 1983, 150 

Lougheed et al. 1998, Chumchal et al. 2005).  151 

The physiological tolerances and habitat preferences of carp have been investigated by 152 

several authors (Crivelli 1981, Balon 1995, Garcia-Berthou 2001, Penne and Pierce 2008), 153 

providing a sound basis for predictor variable selection. Although carp prefer shallow, warm, slow 154 

moving waterbodies and have a high tolerance of eutrophic waters, established populations have 155 

been found under a broad range of environmental conditions (Koehn 2004, Schade and Bonar 156 

2005). Further, while ENM techniques have previously been used to predict the full potential 157 

invaded range of carp in North and South America (Zambrano et al. 2006), the occurrence and 158 

abundance patterns of this invader have not yet been modeled at a regional scale. 159 

 160 

Data collection 161 

The abundance and distribution records used to develop the models were obtained from the 162 

Minnesota Department of Natural Resources (MNDNR). Carp currently occur throughout most of 163 

the southern and some of the north-western areas of Minnesota and are established in over 800 164 

lakes that are routinely surveyed by the department. While the MNDNR uses several sampling 165 

methods to assess fish populations, we restricted our analysis to biomass catch per unit effort 166 

(BPUE) data from standard summer trap net sets, as this method is most effective at capturing 167 

various benthivorous fish species, including carp (A. Stevens, MNDNR, pers. comm.).  168 
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The frequency with which a particular lake is surveyed depends largely on its size, 169 

recreational value and various logistic factors. BPUE measures can fluctuate from one survey 170 

event to another due to factors such as winter fish kills, atypically large age-0 year classes or other 171 

stochastic events. We sought to minimize the potential effects of sampling bias and short term 172 

fluctuations in BPUE in our models. We did this by limiting our analysis to lakes that had been 173 

sampled for their fish populations a minimum of 3 times between 1980 and 2007 and derived a 174 

mean estimate of BPUE from repeat samples. We believe that this metric best reflects long-term 175 

equilibrium densities.  176 

Independent variables with potential distributional importance were compiled from several 177 

main sources. Climatic variables, consisting of 20-year averages, were obtained from the National 178 

Climate Data Center. For each lake, climate data was extracted from the nearest sampling station, 179 

generally located within 10 to 30 km of the site. Lake morphometry data were provided by the 180 

MNDNR, while water chemistry variables, which consisted of 10-year summer averages, were 181 

obtained from the Minnesota Pollution Control Agency and the Environmental Protection 182 

Agency’s STORET database. In most cases, variables within each category (i.e. climate, 183 

morphometry, water chemistry) formed several tightly correlated subsets.  As a high degree of 184 

correlation between predictor variables is generally undesirable for ENM applications, the number 185 

of predictors was reduced after removing all but one variable within each highly correlated 186 

grouping (Spearman’s |r| > 0.8), while taking into consideration the availability of data for each 187 

predictor.   188 

The final set of variables included maximum and minimum annual air temperature, annual 189 

precipitation, growth degree days (annual sum of daily air temperature above 5ºC), lake surface 190 

area and maximum depth, total nitrogen concentrations, total alkalinity, and Carlson’s trophic state 191 

index (TSI). TSI is a common measure of lake productivity and can be derived from Chlorophyll-a 192 
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concentrations, total phosphorus, secchi depth measurements, or a combination of these factors 193 

(Carlson 1977). Variables are summarized in Table 1.   194 

The final Minnesota database consisted of 285 carp-invaded lakes and 238 lakes where 195 

carp have been historically absent, after removing all entries that did not meet our criteria or for 196 

which data on predictor variables were unavailable. These data were used to derive (i) the 197 

abundance data set which contained mean BPUE values and respective environmental predictors 198 

for the 285 lakes containing carp and (ii) the occurrence data set which contained information on 199 

all 523 water bodies, where carp BPUE was converted to a dichotomous variable representing 200 

presence or absence.  201 

 202 

External validation data 203 

To assess the degree to which we might generalize from our sample of Minnesota lakes, we 204 

compiled information for an additional 38 lakes in eastern South Dakota. Carp distribution data 205 

were obtained from the South Dakota Game, Fish and Parks Commission (SDGFP), which 206 

employs a similar sampling protocol and equipment to that used by the MNDNR. This data set 207 

consisted of mean BPUE values and presence-absence data derived from the past 10 years of trap 208 

net sampling. Environmental data corresponding to this set of lakes were compiled from a 209 

database maintained by the South Dakota Department of Environment and Natural Resources and 210 

additional sources cited above. 211 

 212 

Model development and validation: Artificial neural networks 213 

We used multi-layer feed-forward artificial neural networks (ANN) trained by back-214 

propagation (Rumelhart et al. 1986) to model the occurrence and abundance of carp. We chose to 215 

work with ANN because this method requires no prior assumptions about underlying distributions, 216 
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can account for nonlinearity and interactions between variables, and has demonstrated a high 217 

predictive power compared to several common ENM methods, including generalized linear 218 

models, discriminant analysis, classification and regression trees and other machine learning 219 

methods (Baran et al. 1996, Ozesmi and Ozesmi 1999, Tan et al. 2006, Olden et al. 2008). ANN 220 

have previously been applied to many problems in ecology (e.g. Lek and Guegan 1999, Ozesmi et 221 

al. 2006, Goethals et al. 2007), and have shown promising performance in their ability to model 222 

both the occurrence (Vander Zanden et al. 2004) and abundance patterns (Baran et al. 1996, 223 

Brosse and Lek 2002) of several freshwater fish species. For more information concerning ANN, 224 

their implementation, comparison to other modeling methods and available software we refer 225 

readers to Bishop (1995) as well as Olden et al. (2008).  226 

Our feed-forward networks consisted of multiple interconnected layers of processing 227 

elements, often termed neurons. These included an input layer, representing each of our 9 228 

predictor variables, one to two hidden layers and an output node, each connected by a set of 229 

adjustable parameters (i.e. weights). During the training process, variables associated with each set 230 

of observations are fed through the network, multiplied by their respective weights, summed and 231 

transformed into an output signal by applying a transformation function. This process is repeated 232 

at each hidden layer until the signal reaches the output neurons where the values, corresponding to 233 

the variable being predicted, are calculated.  Using this output, the mean squared error (MSE) 234 

between predicted and observed values was computed and used to adjust the weights between the 235 

neurons in each layer, by applying the Levenberg-Marquardt backpropagation algorithm (Hagan 236 

and Menhaj 1994). This process was repeated for multiple epochs (i.e. training iterations) to 237 

sequentially minimize the MSE between observed and predicted outputs.  238 

Prior to training, input variables were proportionally scaled to a range of -1 to 1. This was 239 

done in order to standardize the units of measurement associated with different predictor variables, 240 
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ensuring that each receives equal attention during training (Goethals et al. 2007).  We then 241 

separated the data into three components: the calibration set, and the internal and the external 242 

validation sets. The calibration data, which consist of ~80% of lakes randomly selected from the 243 

complete Minnesota dataset, were used to fit the models and optimize network architecture. The 244 

remaining 20% of the Minnesota data was allotted to the internal validation set, which was later 245 

used to evaluate the ability of our models to interpolate within the main study region. Data for the 246 

South Dakota lakes (i.e. the external validation set) were used to test the model’s ability to 247 

extrapolate to independent sites.  248 

To limit over-fitting the networks, we used a form of cross validation known as early 249 

stopping (Prechelt 1998). Before training, the calibration data were randomly divided into training 250 

and test sets, corresponding to roughly 60% and 20% of the full Minnesota data respectively. 251 

During the training process, the test data were employed to limit the number of training iterations 252 

by terminating training when test set MSE did not decrease during 5 subsequent epochs. This 253 

procedure did not directly influence weight adjustments but rather was used to improve the ability 254 

of the fitted model to generalize to new data.  255 

The optimal number of hidden layers and neurons within them was determined empirically 256 

by creating multiple networks, with all other parameters held constant. Network performance can 257 

be sensitive to the random initial weight values set prior to training (Ozesmi et al. 2006, Olden et 258 

al. 2008). For this reason, 100 networks were run based on the same architecture, after resetting 259 

the initial weights to small random values, and performance was assessed based on the averaged 260 

predictions across all 100 runs. For the occurrence data we tested networks with no hidden layer 261 

and a single hidden layer containing between 1 and 15 neurons. Models with no hidden layer were 262 

included to evaluate the performance of ANN against what is essentially a generalized linear 263 

model (Ozesmi et al. 2006). For the abundance data, in addition to testing models with zero and 264 
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one hidden layer, we also examined models containing 2 hidden layers, since during the 265 

optimization procedure networks with a single layer had a consistent bias toward underestimating 266 

high BPUE values. All networks were constructed and trained using the version 5 of the Neural 267 

Network Toolbox in MATLAB (The MathWorks, Natick, Massachusetts). 268 

The relative importance of each predictor variable was assessed using Garson’s algorithm 269 

(Garson 1991). This procedure consisted of calculating the product of the weighting factors 270 

between each input-output neuron connection, summing the products across all hidden neurons, 271 

and calculating a percentage representing the individual contribution of each variable to network 272 

predictions. For more information on calculating variable importance using Garson’s algorithm, 273 

we refer readers to Goh (1995).  274 

  275 

Model Performance criteria 276 

For the occurrence model, network outputs take on continuous values ranging between 0 277 

and 1, representing the probability of carp presence at each site. In order to assess model accuracy, 278 

we opted to employ a threshold selection procedure that maximized the sum of model sensitivity 279 

(the proportion of correctly classified presences) and model specificity (the proportion of correctly 280 

classified absences), as the arbitrary choice of a threshold probability at which the carp were 281 

deemed either present or absent (e.g. 0.5) could greatly influence our results (Manel et al. 2001). 282 

This procedure consisted of developing Receiver-Operating Characteristic (ROC) curves (i.e. plots 283 

of model sensitivity against 1-specificity across different thresholds) and determining the threshold 284 

at which the sum of these values was at its maximum (Manel et al. 2001, Jimenez-Valverde and 285 

Lobo 2007). Using this threshold, we then generated confusion matrices: 2 x 2 tables containing 286 

the true positive, false positive, true negative and false negative rate associated with each network 287 

(Fielding and Bell 1997). These matrices as well as the ROC itself were used to derive four 288 
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performance measures including: (1) the percentage of correct classification instances (CCI) (i.e. 289 

the percentage of sites where the model correctly predicted either presence or absence); (2) model 290 

sensitivity; (3) model specificity; and (4) the area under the ROC curve (AUC), a measure that is 291 

independent of threshold selection (Fielding and Bell 1997, Pearce and Ferrier 2000).  292 

In contrast to the occurrence model, the outputs of the abundance networks are inherently 293 

continuous. Performance was therefore evaluated based on regression analysis of the fit between 294 

observed and predicted values. The slope (m), intercept (b) and goodness of fit (R2) of this 295 

relationship were used to derive the model non-ideality index (δ): the Euclidean distance between 296 

the observed, |m, b, R2|, and the ideal agreement vectors |1, 0, 1|, which would be obtained from a 297 

perfect fit (Plumb et al. 2005). Networks with the lowest δ were considered to provide the best 298 

predictions.  299 

Once the optimal network architectures were determined based on the performance for the 300 

calibration data, the resulting models were used to generate predictions of expected carp 301 

occurrence and abundance for both the internal and external validation sets. As with the calibration 302 

data, predictions were obtained by averaging outputs across all 100 runs of the optimal networks.  303 

Performance on the validation data was assessed as described above, with the exception that, for 304 

occurrence predictions, the threshold probability for carp presence was derived from calibration 305 

data results.  306 

 307 

Results 308 

Occurrence model 309 

The optimal presence-absence network consisted of 9 input neurons, corresponding to each 310 

of the predictor variables (Table 1), one hidden layer containing 5 neurons, and a single output 311 

node. Sigmoid transfer functions were used at each layer. All networks that included a hidden 312 
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layer outperformed those with no hidden neurons (i.e. GLM). For the calibration data, the model 313 

correctly identified 197 of 228 (86 %) lakes where carp are present and 171 of 191 (90 %) lakes 314 

where carp have been historically absent.  When applied to the internal validation set, the model 315 

correctly predicted carp presence in 49 of 57 (86 %) lakes and carp absence in 39 of 48 (81 %) 316 

lakes. When extrapolated to South Dakota lakes, carp presence and absence was correctly 317 

predicted at 25 of 33 (76 %) and 4 out of 5 sites (80 %), respectively (Figure 1).  318 

Performance criteria including CCI, sensitivity, specificity, AUC and respective P-values 319 

for each data set are presented in Table 2. For all indices, performance on the internal validation 320 

set was comparable to that on the calibration data but slightly reduced when applied to the South 321 

Dakota lakes. For AUC, values of 0.5 or lower indicate that model predictions are no better than 322 

random, while values above 0.5 are increasingly accurate. According to Pearce and Ferrier (2000), 323 

the AUC values obtained indicate very good discrimination for the Minnesota lakes and 324 

reasonable predictive power when applied to the external validation data.  325 

 326 

Abundance model 327 

The optimized network architecture for carp biomass per unit effort (BPUE) consisted of 9 328 

input neurons, two sigmoid hidden layers (containing 6 and 3 neurons, respectively), and one 329 

linear output neuron. As with the occurrence model, networks with a hidden layer performed better 330 

than those with no hidden neurons but optimal performance was achieved when two hidden layers 331 

were included. Observed carp BPUE was significantly related to model predictions for the 332 

calibration set (R2 = 0.76, n = 228, F = 735.0, p < 0.0001), the internal validation set (R2 = 0.73, n 333 

= 57, F = 145.8, p < 0.0001) and for the South Dakota data (R2 = 0.32, n = 33, F = 15.90, p = 334 

0.0004), Figure 2 a, b and c.  335 
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The non-ideality index (δ) was 0.24, 0.41 and 2.03 for the calibration data, internal 336 

validation set and South Dakota lakes, respectively.  For each dataset the intercepts of the fitted 337 

regression line did not differ significantly from zero (t = 0.06, 0.73, 1.49, p = 0.95, 0.47, 0.15 for 338 

the calibration, internal and external validation data respectively). The slope of the relationship 339 

between predicted and observed BPUE did not differ significantly from 1 for both the calibration 340 

(t = -0.75, p = 0.45) and the internal validation data (t = 0.1, p = 0.92); although for the South 341 

Dakota dataset there was a significant departure from a one to one relationship (t = -2.10, p = 0.04). 342 

However, despite a loss of predictive power, the 3 lakes with the highest BPUE observed in the 343 

South Dakota dataset, were among the 5 lakes predicted to support the highest carp densities. The 344 

model also correctly identified 8 of 10 lakes with the lowest observed carp BPUE. 345 

 346 

Predictor variable contribution 347 

The relative contribution of each predictor variable is illustrated in Figure 3. For both the 348 

carp occurrence and abundance models, limnological variables were weighted more heavily than 349 

climate variables, with the exception of minimum annual temperature. For the occurrence model, 350 

the variables with the largest contributions to network predictions included trophic state index 351 

(TSI), minimum annual temperature, and total alkalinity. For the abundance model, the most 352 

highly weighted variables included TSI and total nitrogen, with lake morphometry and climate 353 

variables contributing more evenly to network outputs.  354 

 355 

Discussion 356 

Using a neural network approach, we were able to predict both the occurrence and the 357 

abundance of common carp and to extrapolate model predictions to new data. Our occurrence 358 

model correctly identified over 75% of all sites where this invader is either present or absent, even 359 
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when generating predictions in locations independent from those where the model was 360 

parameterized. Predictions at new sites within the same region and in independent locations 361 

explained 73% and 32% of variation in carp biomass, respectively. Extrapolation to new 362 

geographic regions, while rarely done, represents the strictest test of ecological niche-based 363 

models intended for management application. Although the predictive power of our carp 364 

abundance network was reduced when applied to South Dakota lakes, the model still explained a 365 

significant portion of biological variation. At a minimum, this degree of transferability would 366 

allow for a relative ranking of sites vulnerable to carp invasion within the area.  367 

Indeed, based on the 5 sites predicted to support the highest carp biomasses, we were able 368 

to identify the 3 most heavily carp-infested lakes in our South Dakota dataset. Cumulatively, these 369 

3 waterbodies account for over 36% of total observed carp BPUE. It is also interesting to note that 370 

the lake for which carp biomass was most substantially overestimated is a small eutrophic 371 

waterbody that experiences frequent fishkills and is also commercially harvested for carp, which 372 

may partially explain the discrepancy between observed and predicted BPUE for this site (D. 373 

Lucchesi, SDGFP, pers. comm.). When this data point is removed, the strength of the relationship 374 

between observed and predicted BPUE increases substantially (R2 = 0.43, n = 32, F = 22.97, p < 375 

0.0001) and the non-ideality index decreases to 1.66. Further, our model also correctly identified 8 376 

of the 10 lakes where carp impacts would be expected to be minimal. Thus, while rarely employed 377 

in the study of biological invasions, using ENM techniques to predict the abundance of introduced 378 

species can be a viable approach to gaining additional insight into the risk they pose on potential 379 

recipient habitats, even when extrapolating predictions to new locations. 380 

 381 

Joint model approach 382 
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By combining models for predicting the establishment success of introduced species with 383 

those for forecasting abundance, we should be able to generate more comprehensive measures of 384 

the relative risk posed by particular NIS, and allocate prevention efforts accordingly. Such joint-385 

model approaches have recently been advocated in the literature, with the general consensus that, 386 

where possible, multiple elements of the invasion process should be examined in concert to 387 

provide improved predictions. Most existing studies have focused on combining models of NIS 388 

introduction effort (i.e. propagule pressure) with those for predicting invasibility (e.g. ENM for 389 

occurrence) to estimate the overall risk of establishment (e.g. Herborg et al. 2007, Leung and 390 

Mandrak 2007, Jacobs and Macisaac 2009), but few have explicitly considered impacts. Yet by 391 

combining models for occurrence, surrogate measures of propagule pressure, and quantitative 392 

analyses of the effects caused by introduced species, several researchers have demonstrated the 393 

addevalue of integrating impacts into predictive models of invasion risk (Vander Zanden et al. 394 

2004, Mercado-Silva et al. 2006, Vander Zanden and Olden 2008).  395 

By prioritizing management of the small subset of invasible South Dakota lakes expected 396 

to support high carp densities, we would be able to mitigate a substantial portion of the impact to 397 

be expected in the area. Thus, recent approaches that have been developed to incorporate impact, 398 

and additional aspects of the invasion process, should improve predictive power and significantly 399 

reduce the number of sites thought to require management intervention, rather than limiting 400 

analyses to a single component. As demonstrate here, models for forecasting the abundance of 401 

particular NIS can provide insightful predictions and identify sites are most likely to at risk of 402 

negative impacts, beyond those which are simply invasible. The utility of such models is however 403 

dependant upon their ability to predict invasions in new areas. For invasive species in particular, 404 

tests of extrapolation are critical when evaluating the utility of ENMs, given that we are primarily 405 
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interested in generating predictions for presently uninvaded locations where invasive species may 406 

eventually spread.  407 

 408 

Predictor variable contribution 409 

Of the factors that may influence the transferability, as well as the overall accuracy of 410 

niche-based models, the choice of predictor variables is of particular importance (Vaughan and 411 

Ormerod 2003, Araujo and Guisan 2006). Thus, it is relevant to further examine the relative 412 

contribution of specific variables to our model predictions.  For both the carp occurrence and 413 

abundance models, most of the variables contributing strongly to network predictions are directly 414 

interpretable. For example, minimum annual temperature, which was found to be a significant 415 

predictor of carp occurrence, affects carp spawning activity and can also cause winter fishkills, 416 

both of which can limit the distribution of this species (Balon 1995). Low winter temperatures may 417 

currently restrict carp to the southern two thirds of Minnesota but may not be as important a factor 418 

in determining their distribution in South Dakota, where minimum annual temperatures are 419 

somewhat less extreme.  420 

Alkalinity, another relevant predictor for carp occurrence, is essentially a measure of 421 

buffering capacity, and influences many important limnological parameters, primarily by 422 

controlling pH. For example, water acidity can influence carp by affecting larval development 423 

(Korwinkossakowski 1988) and macro-invertebrate densities – an important food source for carp 424 

(Garcia-Berthou 2001). Alkalinity may therefore influence carp distribution both directly and 425 

indirectly by affecting numerous biotic processes.  426 

Variables related to trophic state (i.e. TSI, TN) were found to be relevant predictors for 427 

both carp occurrence and abundance. The contribution of these factors likely reflects the high 428 

tolerance of  carp to eutrophic conditions and their tendency to establish and become dominant in 429 
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even heavily degraded waterbodies (Schade and Bonar 2005). However, while carp have an 430 

affinity for eutrophic conditions, they also tend to perpetuate this state through their feeding 431 

activities and excretion (Parkos et al. 2003, Chumchal et al. 2005, Matsuzaki et al. 2007). As such, 432 

the contribution of these variables may also partly be explained by the impacts that carp have had 433 

on the waterbodies to which they have been introduced. Unfortunately, given the historic 434 

introduction of carp to Minnesota, resulting in a lack of data prior to invasion, we were unable to 435 

investigate of the relative importance of this factor.  436 

The contribution of most variables suggests that, to some extent, different environmental 437 

conditions are important in determining carp occurrence and its abundance. Within the context of 438 

ENM, similar results have been reported by several authors (e.g. Ramcharan et al. 1992, Neilson et 439 

al. 2005, Heinanen et al. 2008). Although models developed from occurrence data have been 440 

shown to predict the upper limit of abundance for a variety of species (VanDerWal et al. 2009), we 441 

would nonetheless caution against the interpretation of the probability of NIS occurrence alone as 442 

representative of its likely abundance or potential impacts.  443 

 444 

Conclusion 445 

Our results suggest that ecological niche-based modeling methods, similar to those 446 

commonly employed to forecast the occurrence of invasive species, can be used to develop 447 

accurate predictions for measures of invader abundance. Such models can be particularly useful 448 

for forecasting the relative severity of the impacts of NIS across sites yet to be invaded. When the 449 

relationship between an invader's abundance and its impacts is known, models that predict 450 

abundance from local environmental variables could also be used to quantitatively forecast the 451 

magnitude of particular impacts at potentially invasible sites, thereby contributing to a more 452 

informative assessment of future invasion threats. Further, when combined with predictions 453 
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regarding establishment success, such models can lead to more informed measures for the overall 454 

risk posed by particular NIS and can allow for identification of sites where management 455 

interventions are most needed.  456 

The accuracy and transferability of such models must be rigorously tested in order to assess 457 

their utility for practical management applications. As ENM for invasive species are often 458 

intended to inform management decisions at currently uninvaded sites, the influence of various 459 

factors that can affect the ability of such models to extrapolate to new areas merits more thorough 460 

investigation. Finally, the ability of many NIS to modify conditions that influence their own 461 

abundance through positive feedbacks (Gonzalez et al. 2008) must be also addressed, as such 462 

effects may compromise the ability of models developed from current abundance data to generate 463 

useful predictions in uninvaded habitats.  464 
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Table 1 Summary of the nine environmental variables used for modeling the occurrence and the 665 

abundance and of Cyprinus carpio. Descriptive statistics were derived from the full Minnesota 666 

dataset which included the 285 lakes containing carp and 238 lakes where carp are absent.  667 

Variable Abbreviation Min Mean Median Max 

Climate           

   Maximum air temperature (°C) MAXT 35.56 37.27 37.22 41.11

   Minimum air temperature (°C) MINT -46.67 -35.14 -35.00 -31.67

   Growth degree days GDD 3536 4369 4496 4890

   Annual precipitation (mm) MP 571.20 741.90 744.00 878.30

Morphometry           

   Lake area (ha) LA  0.86 316.43 164.19 4025.42

   Maximum depth (m) MXD  1.00 10.51 8.20 42.70

Water Chemistry           

  Total nitrogen (ppm) TN 0.38 1.52 1.40 5.07

  Total alkalinity (ppm) ALK 41.00 149.00 145.00 324.00

  Carlson's trophic state index TSI 41.30 62.67 62.59 93.29

 668 

 669 

 670 
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 672 

 673 

 674 

 675 
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Table 2 Performance of the carp occurrence model for the 485 lakes on which the model was 676 

trained (calibration data), the 57 lakes within Minnesota withheld from model development 677 

(internal validation data) and the 38 lakes from eastern South Dakota (external validation data). 678 

Criteria include CCI (the percentage of sites where the model correctly predicted either presence 679 

or absence), model sensitivity and specificity, AUC (area under the receiver-operating 680 

characteristic curve) and corresponding P-value.  681 

Data set CCI Sensitivity Specificity AUC P 

Calibration 87.83 86.40 89.53 0.94 > 0.0001

Internal validation 83.81 85.96 81.25 0.90 > 0.0001

External validation 78.95 78.79 80.00 0.75     0.04 
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Figure legends 696 

 697 

Figure 1 Geographic locations and model classifications for the 523 Minnesota lakes and the 38 698 

South Dakota lakes used in this study. Circles represent sites where carp are currently established 699 

while triangles indicate sites from which carp are absent. Lakes correctly classified by the 700 

occurrence model are illustrated in black and incorrectly classifies lakes are shown in grey. 701 

 702 

Figure 2 Relationship between predicted and observed carp abundance, measured as biomass (kg) 703 

per unit effort (BPUE), for A the calibration data, B the internal validation set and C the external 704 

validation data. Solid lines represent the fitted regression line between observed and predicted 705 

BPUE values and dotted lines represent a one to one fit.  706 

 707 

Figure 3 Percent relative contribution (mean ± standard deviation, derived from 100 runs of the 708 

optimal networks) of the nine environmental predictor variables for the carp occurrence (P/A) and 709 

abundance (BPUE) models, assessed using Garson’s algorithm. Abbreviations for each variable 710 

can be found in Table 1. 711 
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