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Abstract. Estimating a-diversity and species distributions provides baseline information to
understand factors such as biodiversity loss and erosion of ecosystem services. Yet, species sur-
veys typically cover a small portion of any country’s landmass. Public, global databases could
help, but contain biases. Thus, the magnitude of bias should be identified and ameliorated, the
value of integration determined, and application to current policy issues illustrated. The ideal
integrative approach should be powerful, flexible, efficient, and conceptually straightforward.
We estimated distributions for >6,000 species, integrating species sightings (S) from the Global
Biodiversity Information Facility (GBIF), systematic survey data (S2), and “bias-adjustment
kernels” (BaK) using spatial and species trait databases (S2BaK). We validated our approach
using both locational and species holdout sets, and then applied our predictive model to
Panama. Using sightings alone (the most common approach) discriminated relative probabili-
ties of occurrences well (area under the curve [AUC] = 0.88), but underestimated actual proba-
bilities by ~4,000%, while using survey data alone omitted over three-quarters of the >6,000
species. Comparatively, S2BaK had no systematic underestimation, and substantially stronger
discrimination (AUC = 0.96) and predictive power (deviance explained = 47%). Our model
suggested high diversity (~200% countrywide mean) where urban development is projected to
occur (the Panama Canal watershed) and also suggested this is not due to higher sampling
intensity. However, portions of the Caribbean coast and eastern Panama (the Dari�en Gap)
were even higher, both for total plant biodiversity (~250% countrywide mean), and CITES
listed species. Finally, indigenous territories appeared half as diverse as other regions, based on
survey observations. However, our model suggested this was largely due to site selection, and
that richness in and out of indigenous territories was roughly equal. In brief, we provide argu-
ably the best estimate of countrywide plant a-diversity and species distributions in the
Neotropics, and make >6,000 species distributions available. We identify regions of overlap
between development and high biodiversity, and improve interpretation of biodiversity pat-
terns, including for policy-relevant CITES species, and locations with limited access (i.e.,
indigenous territories). We derive a powerful, flexible, efficient and simple estimation approach
for biodiversity science.

Key words: bias; CITES; GBIF; global change; Global South; Neotropics; presence-only data; species
distribution model.

INTRODUCTION

Estimating the spatial distribution of biodiversity
provides critical baseline information for fundamental
ecological questions on the drivers and patterns of living
organisms on Earth, as well as for applied issues in con-
servation. For instance, such baseline information could
help address questions on the distributions of ecosystem

function and services in relation to local richness
(Balvanera et al. 2014), or refine analyses of connectiv-
ity, where different plant species form a key part of the
habitat (Garc�ıa-Feced et al. 2011). For more applied
contexts, knowledge of the distribution of threatened
species could help minimize impacts on these species
through land-use planning or design of protected areas
(Venter et al. 2014). Clearly, these considerations are
central to the maintenance of our living planet, given
projected socioecological changes (IPCC 2014).
Such baseline spatial estimates of biodiversity are rare

and would benefit from further analyses. Existing esti-
mates have been undeniably useful, but are based largely
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on coarse range maps, which are often based on expert
opinion, and have been critiqued in terms of overestimat-
ing occurrences (Hurlbert and Jetz 2007), or species distri-
bution models (SDMs) based on species sightings (Hastie
and Fithian 2013, Warton et al. 2013), which have well
known biases, including incomplete detections (Lahoz-
Monfort et al. 2014), causing underestimation bias, and
unequal reporting across locations (Beck et al. 2014) and
species (Troudet et al. 2017). For instance, areas near
roads or population centers may be more accessible and
more likely to be sampled; some species may possess visu-
ally conspicuous traits or may be more popular, leading
to spatial and species-specific biases in the estimation of
species distributions. Other methods that estimate unbi-
ased probabilities rely on full presence–absence data (e.g.,
Wang et al. 2003, but see Fithian et al. 2015), time-series
information for spreading species (Gertzen and Leung
2011), or show lack of bias only qualitatively, for single
specific species (Gormley et al. 2011, Catterall et al.
2012). These methods are difficult to apply to entire suites
of species, given that the necessary data are typically lack-
ing, and/or they do not integrate easily with existing
SDMs, and therefore cannot take advantage of continu-
ing advances in the field. Given the increase of publicly
available databases, disparate information can now be
integrated, potentially increasing predictive power. Yet,
given that each database contains imperfect information,
the value of integration for estimating spatial biodiversity
patterns needs to be clearly demonstrated. Further, given
their importance, it is imperative to assess and improve
the reliability of baseline biodiversity estimates.
In addition to high predictive power, an ideal estima-

tion approach might contain the following characteristics:
(1) flexibility, allowing researchers to choose amongst the
wide array of SDMs available, to utilize continuing
advances in the field; (2) efficiency, to estimate the thou-
sands of species comprising countrywide biodiversity,
computational complexity should scale near linearly with
species number; and (3) simplicity, easily understandable
approaches are more likely to be adopted and used cor-
rectly. If these elements could be achieved, they would
yield a viable, general, biodiversity tool, facilitating
applied and fundamental ecological inquiry.
Our objectives are twofold. (1) We derive an integrative

estimation approach, which is simple, efficient and flexi-
ble, and we demonstrate its predictive power through vali-
dation. In so doing, we demonstrate the value of
integration across global databases, despite inherent
biases, for creating baseline spatial biodiversity estimates.
(2) We estimate countrywide spatial plant biodiversity,
using Panama as our model system, and illustrate how
our novel baseline estimates improve our understanding
of biodiversity patterns. Specifically, we identify regions
of highest overall plant biodiversity and species of specific
interest (CITES listed species), and estimates for regions
with limited accessibility (indigenous territories). Further,
we make available the distributions of >6,000 plant spe-
cies across Panama.

MATERIALS AND METHODS

Study system

Panama is an exemplar of issues facing the Global
South. It has high biodiversity, but also is characterized
by rapid economic (10.6% in 2011; Central Intelligence
Agency 2016) and population growth (>40% by 2050;
World Bank 2013), and is the focus of an integrative
effort centered on sustainability science (Panama
Research and Integrated Sustainability Model).

Data sources and processing

We used information from both Panama and Costa
Rica, given their data availability and overlapping envi-
ronmental conditions. We collated information from pub-
licly available databases and government sources,
including (1) occurrence information, species sightings
and five sources of systematic plant surveys; (2) species
information, species life history traits, correlates of species
“popularity” via web-based analytics; (3) environmental
variables, bioclimatic variables, elevation and slope, evap-
otranspiration, vegetation, tree cover; (4) human demog-
raphy, country boundaries, distance to roads, distance to
cities, and city population sizes (Table 1).
All data were standardized, cleaned, and discretized

into grid cells to match the WorldClim data set
(Table 1), which comprised the majority of our predic-
tors (~0.9 9 0.9 km cells). This resulted in 331 grid
cells comprising the survey data, and 19,778 grid cells
containing all GBIF sightings (Table 1). To avoid dou-
ble-counting, species names were standardized using
the Taxonomic Name Resolution Service (TNRS:
GCC [Flann 2009], ILDIS [International Legume
Database and Information Service 2017], TPL [The
Plant List 2013]), following the APGIII classification
(iPlant Collaborative 2013). Survey data were con-
verted to presences/absences for each species. The
PNFI and Hilje et al. (Table 1) surveyed only tree spe-
cies, and therefore these sites were excluded from anal-
yses of non-tree species. For distance calculations, we
generated a distance raster and Voronoi polygons,
using the raster and dismo R packages. We corrected
an error in the Global Roads Open Access Dataset
(CIESIN and ITOS 2013), which had positioned a
road through the Dari�en Gap, where no road access
exists. We excluded species with <10 sightings, as a
minimum threshold to build SDMs. This reduced the
number of sightings from 430,336 to 404,354 (i.e., a
loss of ~6%), allowing analyses of 7,360 species. For
species trait data, we removed duplicated rows and val-
ues classified as “variable or conflicting reports,” used
the mean where multiple values existed, and set miss-
ing values to zero (corresponding to the normalized
mean). All continuous predictor variables were normal-
ized (mean of zero; standard deviation of unity), for
comparability.
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Models

We analyzed five models. The first two are basic
models, presented for comparison. The third model
builds upon these by introducing a simple bias

adjustment, comparing survey to sightings data. The
fourth model combines survey and sightings data (for
species where both data exist) by means of a single
dummy variable, and the fifth model is a combination
of models 3 and 4.

TABLE 1. Description of data sources used in the analyses.

Datum Description Source

Occurrence information
Species sightings records of species presence (1 or no data) across

Panama and Costa Rica
Global Biodiversity Information Facility
(GBIF 2017)

Species surveys systematic surveys of species presence/absence
(1/0) across Panama and Costa Rica

Panamanian National Forest Inventory (PNFI,
Melgarejo et al. 2015), Tropical Ecology
Assessment and Monitoring Network (TEAM,
http://www.teamnetwork.org/), Alwyn H.
Gentry Forest Transect Data Set and Missouri
Botanical Gardens (Phillips and Miller 2002),
Hilje et al. (2015), BioTreeNet (Cayuela et al.
2012), Center for Tropical Forest Science
(CTFS, Condit et al. 2013)

Species variables
Species life history
traits

species life history predictors potentially related to
bias: vegetation type (herbs, shrubs, trees, vines,
lianas, non-woody epiphytes; deciduous, evergreen),
size (plant height, diameter, leaf area, seed mass),
and flowering duration

Botanical Information and Ecology Network
database (BIEN; Maitner et al. (2018),
http://bien.nceas.ucsb.edu/bien/)

Google hits number of Google search results (“hits”) for a
species’ Latin name

Google (google.ca)

Taxonomic key
presence

presence of a species’ taxonomic family in one or
more online taxonomic keys

Kew Gardens Neotropikey (https://www.kew.
org/science/tropamerica/neotropikey_generic.
htm), Hansen and Rahn (1969) key (http://
www.colby.edu/info.tech/BI211/)

Environmental variables
Bioclimatic
variables

original 19 bioclimatic variables reduced to
9 uncorrelated variables at 30” resolution or ~0.9 9
0.9 km grid cells (Bio1 = annual mean temperature,
Bio2 = mean diurnal range, Bio3 = isothermality,
bio4 = temperature seasonality, bio12 = annual
precipitation, bio13 = precipitation of wettest
period, bio15 = precipitation seasonality, bio18 =
precipitation of warmest quarter, bio19 =
precipitation of coldest quarter)

WorldClim (Fick and Hijmans 2017)

Elevation estimated from digital elevation model (DEM) Shuttle Radar Topography Mission (SRTM),
Consultative Group for International
Agriculture Research Consortium for Spatial
Information (CGIAR-CSI, http://srtm.csi.
cgiar.org)

Slope calculated from DEM As above, plus raster package in R (Jarvis et al.
2008)

Vegetation Normalized Difference Vegetation Index, NDVI,
at 10 km resolution

Moderate Resolution Imaging Spectroradiometer
(MODIS) from the NASA Earth Observations
(NEO)

Evapotranspiration mean values across 2000–2013 Moderate Resolution Imaging Spectroradiometer
(MODIS) from the NASA Earth Observations
(NEO)

Tree cover mean value in cell Global Forest Cover database (Hansen et al.
2013)

Human demographic traits
Country boundary shape files for Panama and Costa Rica The Global Administrative Boundaries Dataset

(GADM [Global ADMinistrative Areas 2015])
Distance to road value from centroid of cell Global Roads Open Access Dataset (CIESIN and

ITOS 2013)
Distance to urban
center

value from centroid of cell Global Roads Open Access Dataset (CIESIN and
ITOS 2013)

Human population population size of nearest town (~320 towns
across Panama and Costa Rica)

Free World Cities Database (MaxMind 2008)

April 2019 MODELING COUNTRYWIDE PLANT DIVERSITY Article e01866; page 3

http://www.teamnetwork.org/
http://bien.nceas.ucsb.edu/bien/
https://www.kew.org/science/tropamerica/neotropikey_generic.htm
https://www.kew.org/science/tropamerica/neotropikey_generic.htm
https://www.kew.org/science/tropamerica/neotropikey_generic.htm
http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org


Model 1.—We built SDMs using survey data (hence-
forth termed the “Survey Only” model), necessarily
restricting analyses to 1,480 species found in the sur-
veys. We based our SDM on the Generalized Additive
Model (GAM; mcgv package in R, Wood 2011),
given its ease of use, flexibility, and wide adoption.
We used the generalized cross-validation score (GCV)
to select variables, which penalized based on predic-
tion error, as an alternative to stepwise approaches
(Marra and Wood 2011). Smoothers were set to a
maximum of 5 knots, providing high flexibility while
balancing computational efficiency. Other default
options within GAM were used. In notation

zsurvi; j ¼ b0 þ sðx1;iÞ þ sðx2;iÞ þ � � � þ sðxm;iÞ (1)

ŷsurvi; j ¼ 1

1þ e�zsurvi; j
(2)

in R notation

gamðyi; j � sðx1;iÞ þ sðx2;iÞ þ � � � þ sðxm;iÞ; family

¼ binomial; select ¼ TRUE;method ¼ ‘‘GCV.Cp00Þ
(3)

where yi,j was the binary presence/absence response
for survey grid cell i, ŷsurvi; j was the expected probabil-
ity of occurrence, x1. . .m,i were m continuous spatial
predictors, and s were “smoothers” allowing non-lin-
ear relations. Additionally, we included an
unsmoothed categorical variable for country (Panama
vs. Costa Rica). SDMs were fit for each species j,
and predict.gam was used to predict probability of
occurrence across all grid cells, using fitted model
coefficients.

Model 2.—We used sightings to estimate species dis-
tributions (henceforth the “Sightings Only” model).
As absences were unmeasured, we generated 10,000
random reference (pseudoabsence) sites, which
approximated the relative frequencies of different
environmental conditions. We then proceeded as for
Model 1, except that we could perform SDMs for
7,360 sighted species.
With sightings only, one does not expect all occur-

rences to be reported, and probability estimates are also
affected by the (arbitrary) number of reference sites used
in fitting. Thus, we calibrated the output using the sur-
vey data and a generalized linear model (GLM) to yield
absolute probability estimates:

zsoi; j ¼ b00 þ sðx1;iÞ þ sðx2;iÞ þ � � � þ sðxm;iÞ (4)

ŷsoi; j ¼
1

1þ e�zsoi; j
(5)

ŷsoci; j ¼ 1

1þ e�ðb0þb1zsoi; jÞ
(6)

glmðyi; j � zsoi; j ; family ¼ ‘‘binomial00Þ (7)

where zsoi; j was the output from GAMs fitted to each
species j individually, using sightings and pseudoab-
sences, ŷsoi; j and ŷsoci; j were the expected “Sightings
Only” probabilities without (so) and with calibration
(soc), respectively. The parameters b0 and b1 were
coefficients in a GLM fitted to all species j in the
same model. This corrected for systematic bias across
species by statistically rescaling detection rates accord-
ing to a constant bias relationship. The recalibration
could be applied to all 7,360 species, including those
without survey information, but did not consider spa-
tial or species-specific factors influencing bias (com-
pare with Model 3).

Model 3.—We derived a simple “bias kernel” to adjust
“Sightings Only” predictions (henceforth termed the
“Bias adjustment Kernel” or “BaK” model). Biases in
reporting or detection may arise due to environmental
or species-specific factors. If spatial factors causing bias
have consistent effects, we would expect that bias would
be higher in some locations across multiple species.
Thus, we compared the cumulative discrepancy between
observed occurrences in the surveyed cells and the unad-
justed “Sightings Only” predictions. This metric of bias
was then fit to spatial predictors using a 2nd order poly-
nomial GLM, as the simplest non-monotonic option.
More advanced models could be substituted (e.g.,
GAMs), however, second-order polynomials are more
easily interpreted (important given our purpose to iden-
tify predictors of bias):

Bi ¼ log
1þPj yi; j
1þPj ŷ

so
i; j

 !
(8)

glmðBi � x1;i þ x21;i þ x2;i þ x22;i þ � � � þ xm;i þ x2m;iÞ (9)

where Bi was the bias at surveyed location i, with the
numerator being the occurrences observed in the surveys
( yi, j) summed across all species j, and the denominator
being the predicted probability of occurring at location i,
summed across all species j, using the unadjusted “sight-
ings only” probabilities ( ŷsoi; j ; Eq. 5), and x1. . .m were spa-
tial predictors. Unity was added to the numerator and
denominator to avoid zero values. Expected levels of bias
(B̂i) were then calculated for all locations across
Panama, using predict.glm and spatial predictors.
Likewise, some species could be generally more prone

to bias. We estimated species-driven bias as

Bj ¼ log
1þPi yi; j
1þPi ŷ

so
i; j

 !
(10)

glmðBj �T1; j þ T2
1; j þ T2; j þ T2

2; j þ � � � þ Ts; j þ T2
s; jÞ
(11)
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where Bj was the bias for a given species j, T1. . .m were
species-specific variables for species j, and yi,j and ŷsoi;j
were summed across all surveyed locations i. Again, pre-
dict.glm would be used to derive expected bias (B̂j),
given species variables.
Finally, to generate occurrence probabilities, both spa-

tial (B̂i) and species (B̂j) biases were combined with the
Sightings Only predictions, using GLM.

ŷBaKi; j ¼ 1

1þ e�b0þb1zsoi; jþb2B̂iþb3B̂j
(12)

glmðyi; j � zsoi; j þ B̂i þ B̂j ; family ¼ ‘‘binomial00Þ (13)

where ŷBaKi; j was the final predicted probability from the
BaK model, zsoi; j was the combined linear predictors
from the Sightings Only model, and b0. . .3 were fitted
parameters. Thus, the calibrated Sightings Only model
differed from the BaK model only through spatial and
species bias terms, yielding a direct comparison of the
benefit of including those bias terms. Both Sightings
Only and BaK models could be applied to all 7,360
species.
To fit Eqs. 12, 13, the data were combinations of

each species j by each surveyed location i. We note that
one could have fit spatial and species variables directly
on presence/absences across species and locations (i.e.,
essentially skipping Eqs. 8–11). While we considered
this option (and also analyzed other more sophisticated
approaches, e.g., Fithian et al. 2015), the BaK model
(Eqs. 8–13) yielded more accurate predictions, and
therefore we did not consider these alternatives further.
Additionally, calculating the bias terms using Eqs. 8–11
avoids pseudoreplication (each species or location con-
tributes only a single datum to the analyses of bias,
Eq. 9, 11), and is computationally light.

Model 4.—We combined survey and sightings data as a
species-specific means of accounting for bias (henceforth
Surveys and Sightings, S2 model). We modified Eq. 1,
adding a categorical (dummy) variable (di) to distinguish
survey sites (di = 0) from locations of sighting (and pseu-
doabsences) (di = 1), fitting each species separately. In R
notation

gamðyi; j � sðx1;i; diÞ þ sðx2;i; diÞ þ � � � þ sðxm;i; diÞ;
family ¼ binomial; select ¼ TRUE;method

¼ ‘‘GCV.Cp00Þ ð14Þ

This could only be applied to the 1,480 species
observed in the survey records. To predict occurrences
across Panama, we used predict.gam, forcing di = 0.

Model 5.—We considered a composite model, using the
S2 model for species found in surveys, and the BaK
model for all other species (henceforth termed the
S2BaK model).

Analyses

Sightings-only underestimation bias.—While underesti-
mation was expected, given incomplete sightings of spe-
cies, the magnitude of discrepancy is of interest. We
compared the unadjusted sightings only expectations
(Ô) (the most common approach in the literature) to the
actual occurrences of species found in surveys (O),
aggregating across species. Mathematically, the expected
value from a binomial distribution is simply the number
of trials multiplied by probability of occurrence. If prob-
abilities vary, the expected value (i.e., number of occur-
rences) is the sum of individual probabilities (p(y|X))
across all the surveyed species ( j) and sites (i):

Ô ¼
X
j

X
i

pðyij jXiÞ (15)

The probabilistic prediction (e.g., from a logistic func-
tion, Eq. 1) can be conceptualized as the number of sites
containing the species compared to the total number of
sites, given environmental conditions (X). However, the
probabilities from an SDM would be in comparison to
the number of reference sites used for the analysis,
whereas the actual bias should be in comparison to all
sites. For computational reasons, we had arbitrarily cho-
sen 10,000 reference sites to approximate the relative fre-
quency of each set of environmental conditions X. Thus,
to calculate the magnitude of bias, we corrected for the
total number of sites (161,161 grid cells in Panama and
Costa Rica),

NðX Þ ¼ NrðXÞ � N
Nr

(16)

pðyjXÞ ¼ Y ðX Þ
NðX Þ ¼

Y ðX Þ
NrðXÞ

Nr

N
(17)

where p(y|X) was the probability of occurrence, given
environment X, Y(X) was the number of occurrences,
given environment X. N and Nr were the total number of
sites and number of sampled reference sites, respectively.
N(X) and Nr(X) were the total number of sites and sam-
pled reference sites, respectively, given environment X.

Factors contributing to bias.—We explored the factors
contributing to bias using the GLM analysis (Eqs. 8–11).
We reported the coefficient magnitude and significance
for each term in the model.

Validation of predictive ability.—We withheld 100 ran-
domly chosen survey sites (henceforth termed the “vali-
dation set”), and fit all models on the remaining 231
survey sites (henceforth termed the “fitting set”). We
examined model predictions in validation sites, focusing
on species found in the fitting set (henceforth termed
“spatial validation”). Additionally, withholding sites nat-
urally excluded some species in the fitting set. This pro-
vided a meaningful test of a model’s ability to predict
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new (non-fitted) species occurring in “unsampled” vali-
dation sites (henceforth termed “species validation”).
We considered two metrics, the area under the curve

(AUC; Hanley and McNeil 1982) and the proportion of
deviance explained. Area under the curve measured the
ability to rank probabilities of occurrence from high to
low, and was good for relative comparisons, but did not
indicate whether probabilities were accurate on an abso-
lute scale. Deviance measured the accuracy of absolute
probabilities (Lawson et al. 2014). For ease of interpre-
tation, we used the proportion of null deviance
explained (D):

D ¼ 1�
P

i

P
j log 1� yij � ŷMi;j

��� ���� �
P

i

P
j log 1� yij � ŷNULL

�� ��� � (18)

where yi,j was the observed presence/absence at surveyed
site i for species j, ŷMi;j was the predicted probability from
a model (M), and ŷNULL was the mean expectation from
a null model with no species or location specific predic-
tors. The numerator and denominator were the log-like-
lihoods for the predictive model (M) and the null model,
respectively. We truncated values of ŷMi;j outside
0:0001\ŷMi;j\0:9999, as we reasoned that we could not
meaningfully distinguish values very close to zero or
one, given the survey data set, yet extreme values could
have disproportionately large consequences on likeli-
hoods during validation. We also tested sensitivity across
two orders of magnitude (0:001\ŷMi;j\0:999 and
0:00001\ŷMi;j\0:99999). These did not change the con-
clusions, and therefore were not presented. The entire
validation process was repeated 10 times.

Alpha diversity.—We examined predictions for a-diver-
sity in the validation sites, using the mean squared error
between predicted and observed local richness, standard-
ized by the variation in observed local richness (r2mse).
The parameter r2mse is analogous to regression, except
that r2mse measures the mismatch between predicted and
observed richness (i.e., intercept = 0 and slope = 1), and
thus is always either less than or equal to r2 values from
regression.
We generated estimates of a-diversity by summing the

probabilities across species in each location (i.e., stacked
SDMs), for those models able to estimate richness
beyond the surveyed species (i.e., could consider all 7,360
species), namely the Sightings Only, BaK and S2BaK
models. Additionally, we fit richness directly to spatial
predictors (henceforth termed the “Environment Only”
model), analogous to using habitat filtering macroecolog-
ical predictors (Finch et al. 2008). While stacked SDM
approaches have been criticized for ignoring species inter-
actions (Pineda and Lobo 2009), this limitation could be
outweighed if stacked SDMs incorporated more infor-
mation than the Environment Only model.

Predicting plant distributions in Panama.—We used the
best model, based on the above analyses, to estimate

plant distributions across Panama. We refit the relevant
models, using the entire survey data set (331 sites). We
restricted environmental predictors to the ranges used
for fitting. For projecting zsoi;j or z

S2
i;j values, we used the

range of values occurring in the GBIF locations across
Panama (and Costa Rica), and for the bias kernels, we
used the range of values from the survey data. We exam-
ined general patterns and also focused on species listed
under the Convention on International Trade in Endan-
gered Species (CITES) for Panama (UNEP-WCMC
2017), and indigenous territories (INEC 2010), which
have limited accessibility.
Code for S2BaK is made available; see Data Availability

statement.

RESULTS

Bias estimates and spatial and trait-based predictors

As expected, SDMs based on unadjusted sightings
underestimated probabilities of occurrences. In the sur-
veys, 23,426 occurrences across 1,480 species were
observed in 331 sites. In comparison, the unadjusted
Sightings Only model predicted 572.61 occurrences for
these species in these sites. This corresponded to an
underestimation bias of 40.91 times (or ~4,000%).
Biases were correlated with both spatial (Fig. 1a) and

species factors (Fig. 1b), explaining 57.4% and 34.3% of
the deviance, respectively. For spatial factors, anthro-
pogenic factors had the strongest effects, with distance
to the nearest road being the largest in magnitude and
most significant predictor of bias. Additionally, bias was
substantially greater in Panama compared to Costa Rica
(Costa Rica contained two-thirds of the GBIF sight-
ings). Abiotic factors also affected bias. Significance lar-
gely occurred for second-order polynomial terms, with
predominantly negative coefficients (Fig. 1a). Negative
coefficients reflect smaller bias away from average envi-
ronmental conditions. Given that bias should relate to
the number of samples as a proportion of the number of
sites, this finding could potentially reflect the smaller
number of sites with extreme values. This likewise could
account for the reduction of bias at higher elevations,
which comprised less area than lower elevations. Addi-
tionally, tree cover, precipitation in the wettest quarter
and annual precipitation (second-order term) were sig-
nificantly related to bias (Fig. 1a).
For species variables, growth forms were the most sig-

nificant predictors of bias, with trees showing higher
occurrences for a given level of reporting, relative to
other growth forms (Fig. 1b). Interestingly, when decid-
uous or evergreen statuses were recorded, both were pos-
itively related to bias. This was in comparison with
species where these data were absent. While other vari-
ables had larger coefficients (e.g., dispersal syndrome),
they were not nearly as significant. Finally, second order
terms for size related variables (height and seed mass)
and web-based analytics (number of Google hits for a
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species name) showed small but significant effects.
Unlike spatial factors, these second order coefficients
were positive, where extreme values tended to result in
larger underestimation bias.

Validation analysis

S2BaK yielded the most predictive results, with
D = 0.47 and AUC = 0.96 (Table 2a), improving predic-
tions by 10% deviance explained compared to BaK
alone. The Sightings Only SDM, performed consider-
ably worse for absolute probabilities (Table 2a), but per-
formed well for relative rankings (AUC = 0.88,

Table 2b), and thus, this status quo approach remains
useful in the right context. Nonetheless, using S2BaK
was clearly worthwhile.
For spatial validation, the S2 model yielded the best

results (D = 0.44, AUC = 0.88), with BaK performing
second best (Table 2). Although Survey Only had the
strongest result using the fitting set (D = 0.81,
AUC = 0.97), it performed poorly for predicting abso-
lute probabilities in validation (Table 2a), but retained
good relative rankings (AUC = 0.82, Table 2b). Neither
the Survey Only nor the S2 models could be applied to
species not found in the fitting set, and therefore were
not considered in the remaining analyses.
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FIG. 1. Factors correlated with bias (Eqs. 8–11), for (a) environmental variables and (b) species variables. Variables were stan-
dardized, so that coefficients correspond to the relative magnitude of effect. Error bars represent standard errors. *P < 0.05, **P <
0.01, ***P < 0.001).
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On average, the validation set contained occurrences
for 112 (SD = 21) “new” species not found in the fitting
set, with 5,880 species absent from both fitting and vali-
dation sets. The BaK model consistently outperformed
Sighting Only (Table 2a, b), and for the species valida-
tion BaK comparatively increased D by approximately
fourfold (Table 2a). Thus, our results demonstrated the
benefit of including bias adjustment kernels.

Alpha diversity

Stacked SDMs using the BaK model yielded the best
predictions (mean r2mse = 0.34 [SD = 0.078]). This was
followed by the Environment Only model (mean
r2mse = 0.28 [SD = 0.07]). Interestingly, S2BaK did not
perform as well as BaK alone for estimating richness
(mean r2mse = 0.23 [SD = 0.14]). Finally, Sightings Only
performed the worst (mean r2mse = 0.13 [SD = 0.098]).

Predicting plant distributions in Panama

About 7,360 species across Panama and Costa Rica
were used to build the models. Of these, 1,080 species
were predicted by S2BaK to have negligible probabilities
in Panama (<0.0001 in any location, and also did not
occur in Panama GBIF records), and therefore were not
considered further. Thus, in total, we applied our model
to 6,280 species across Panama.
While only 22% of these species were detected in sur-

veys, they accounted for 67% of occurrences (based on
summed probabilities of occurrence using S2BaK). Thus,
the surveys captured many prevalent species, but missed
most of the rarer ones. The Panama Canal watershed,
central Panama, had the most GBIF sightings and survey
locations (Fig. 2). Our model confirmed high richness in
this area (Fig. 3a), with a-diversity ~29 higher than

average. However, our analyses suggested that the highest
richness actually occurred in eastern Panama (Dari�en
region) and along the Caribbean coast (Fig. 3a), with a-
diversity ~2.59 higher than average. The BaK model sep-
arated high richness from observation biases, by calibrat-
ing sightings against occurrences within survey sites (i.e.,
BaKwould be robust to unrepresentative locational selec-
tion of survey sites), assuming that the observations
within survey sites were the “gold standard” and reflected
species occurrences at the local level.
Only eight CITES species were found in surveys in

Panama. However, combined with GBIF sightings, we
could analyze 267 species. We note that we could not
build distributions for 422 CITES species in Panama.
For the 267 analyzable species, they were sighted a total
of 2,178 times in Panama in the GBIF records (an aver-
age of eight sightings per species). However, S2BaK pre-
dicted a combined total of 31,815 occurrences,
suggesting over an order of magnitude greater frequency.
These predictions were heavily skewed, with a median of
19.7 occurrences per species (0.016% of the cells), and
only eight species occurring in more than 1% of the cells
(Cyathea multiflora, Cyathea petiolata, Swietenia macro-
phylla, Alsophila cuspidata, Cyathea bicrenata, Cyathea
delgadii, Cyathea poeppigii, and Cyathea williamsii).
Comparatively, for the 6,280 species analyzed, CITES
species occurred 42.4% as frequently as the other species,
using GBIF records. Whereas S2BaK suggested CITES
species occurred only 20% as often as other species.
Thus, despite the greater absolute numbers of CITES
occurrences predicted, they were predicted to be rela-
tively even rarer than apparent from the GBIF data
set alone. Spatially, “hot spots” of CITES species were
predicted in similar regions as for overall richness, with
the highest CITES diversity in the Dari�en region and the
Panama Canal watershed (Fig. 3b).

TABLE 2. Comparative results from the different models (rows), showing (a) proportion of deviance explained as a measure of fit
on an absolute scale, and (b) AUC as a measure of fit on a relative scale.

Model Validated all Species validation Spatial validation Fitted

(a) Proportion deviance explained (D)
S2BaK 0.47 (0.0052) 0.64 (0.005) 0.44 (0.0066) NA
BaK 0.37 (0.004) 0.64 (0.005) 0.32 (0.0051) 0.38 (0.0017)
Sightings only 0.19 (0.0022) 0.16 (0.0075) 0.2 (0.0024) 0.19 (0.00098)
S2 NA NA 0.44 (0.0066) 0.51 (0.0021)
Survey only NA NA �0.57 (0.022) 0.81 (0.0026)

(b) Area under the curve (AUC)
S2BaK 0.96 (0.00085) 0.9 (0.0061) 0.88 (0.0016) NA
BaK 0.94 (0.001) 0.9 (0.0061) 0.82 (0.0018) 0.95 (0.00046)
Sightings only 0.87 (0.0014) 0.85 (0.0086) 0.79 (0.0016) 0.87 (0.00065)
S2 NA NA 0.88 (0.0016) 0.91 (0.00053)
Survey only NA NA 0.82 (0.0025) 0.97 (0.00051)

Notes: “Validated All” means predicting all species in validation sites, “Spatial Validation” means predicting only species found
in the fitting set (but extrapolating to validation sites), “Species Validation” means predicting all species not found in the fitting set
(i.e., ability to extrapolate to new species in new locations), and “fitted” means species and locations used in fitting set. Sightings
only, Survey Only, S2, BaK and S2BaK refer to the models described in equations 1 to 14. A total of 100 of 331 randomly chosen
survey sites were retained for validation. The process of random selection of sites and validation was repeated 10 times. Values
shown represent the mean, with SD in parentheses.
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Finally, within Panama, 22% of the area is classified
as indigenous territories, yet contains only 9.6% of
GBIF sightings and 2.8% of survey sites (Fig. 2). In sur-
veys, substantially lower a-diversity was found in indige-
nous territories, with the average richness of 33.4
species/cell vs. 78.1 species/cell outside the territories.
While indigenous regions might appear to contain lower
biodiversity, our results suggested otherwise. Applying
the BaK model to those same survey sites, we found sim-
ilar discrepancies (44.1 species/indigenous cell vs. 74.8
species/nonindigenous cell), indicating that the differ-
ences were largely environmentally driven. However,
when BaK was applied to all cells, we found averages of
54.9 species/indigenous cell vs. 60.5 species/nonindige-
nous cell, respectively, indicating that a-diversity was
approximately equal within and outside indigenous terri-
tories. Taken together, these results also suggest that the
locations surveyed in indigenous territories had unrepre-
sentatively low diversity, but there was a tendency to sur-
vey high diversity sites outside indigenous territories.

DISCUSSION

Estimating the spatial distribution of biodiversity is
needed to understand what may be lost as anthropogenic
pressures accelerate. Yet, it is unfeasible to sample local
biodiversity at every location, and while impressive data-
bases have become available, they invariably suffer from
biases (Troudet et al. 2017). Particularly, global

databases are necessarily coarse, often with imperfect
information and uncertainties, and it is questionable
whether their integration would improve predictive
power. Our results built upon and demonstrated the
value of the substantial previous scientific endeavors,
integrating systematic surveys, species sightings and trait
databases, environmental and demographic databases, as
well as web-based analytics. Their combination, through
S2BaK, offers the best current distributional estimates of
plant biodiversity in Panama, performing demonstrably
better than models using survey or sightings data alone.
These 6,280 species distributions provide the building
blocks for further ecological analyses, for instance, pre-
dicting faunal occurrences (Hudgins et al. 2017), defin-
ing connectivity across landscapes (Garc�ıa-Feced et al.
2011), or yielding information on targeted species (e.g.,
Anacardium excelsum, predicted to cover 25% of
Panama, and ranked in the top five species for carbon
storage in Panama; Melgarejo et al. 2015).
S2BaK generated excellent predictions, while being

conceptually straightforward, computationally efficient,
and easily transferrable to alternative SDM approaches.
In a nutshell, S2BaK relied on two relatively simple con-
cepts: (1) S2 required only a single dummy variable to
differentiate sightings from survey data, and (2) BaK
estimated bias by numerically comparing survey data to
predictions from a sightings-only SDM model, and then
used a general linear model (GLM) to combine sight-
ings-only SDM with the bias estimates. As such, one

Caribbean Sea

Pacific Ocean

Panama

Indigenous territories

GBIF records

Survey sites (species richness)

0–37
38–76
77–121
122–184
185–309

FIG. 2. Map of Panama, including official Indigenous territories (Comarcas), locations of Global Biodiversity Information
Facility (GBIF) sightings, and locations and richness found in survey sites.
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could conceivably employ any sightings-only SDM in
approaches S2, BaK, and S2BaK, providing simplicity
and high flexibility. Moreover, since SDMs are fit

separately for each species, computational complexity
increases approximately linearly with the number of spe-
cies, assuming that fitting SDMs (and not the GLM) is

Darién province

Predicted species richness
High: 330

Low: 8

Darién province

Predicted species richness
High: 4.3

Low: 0

Caribbean Sea

Pacific Ocean

Panama Canal

Caribbean Sea

Pacific Ocean

Panama Canal

a

b

FIG. 3. Modeled a-diversity (richness), for (a) all species and (b) CITES-listed species across Panama.
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the rate limiting step. Despite its simplicity, we found
that S2BaK was powerful, and that even for species not
observed in the survey data sets, we could discriminate
between those species that occurred in each location and
those that did not.
While the performance of S2BaK was exemplary for

plant species in Panama (AUC = 0.96, D = 0.47), other
approaches conceivably could work better, given differ-
ent data characteristics. For instance, BaK should theo-
retically outperform the S2 model when environmental
biases are consistent across species. However, our empir-
ical finding was that, when both survey and sightings
data were available, S2 performed better than BaK, argu-
ably reflecting species idiosyncrasies. Nonetheless, suffi-
cient consistency in biases existed, given that BaK
substantially outperformed the Sightings Only model.
Likewise, more complex approaches to distribution
modeling (e.g., using spatial point processes; Dorazio
2014, Koshkina et al. 2017, and independently derived
by Fithian et al. 2015) could be stronger given different
data sets, but performed worse in this system: we con-
ducted additional analyses using the multispeciesPP
package (Fithian et al. 2015) and found weaker results
(AUC = 0.77, D = 0.31) than either S2 or BaK, based
on locational validation of the 1,480 surveyed species
(the existing package did not permit extrapolation to
unsurveyed species). Nonetheless, for other systems, we
suggest exploration of diverse models (e.g., reviewed in
Guillera-Arroita 2017), given potential interactions with
different data characteristics. However, in the case of
plant distributions in Panama, the mixture of S2 and
BaK models was the logical choice.
Our spatial estimates offered baseline information

important for applied issues. For instance, our results
indicate high potential a-diversity in the Panama
Canal watershed, the Dari�en region (Eastern Panama)
and the Caribbean coast (between Col€on and Veraguas
Provinces). Importantly, the Canal watershed, includ-
ing areas surrounding Panama City, face the greatest
pressure population increases projected in the coming
decades (World Bank 2013), and there are ongoing
development plans along the Caribbean coast, overlap-
ping the high diversity regions. For conservationists,
our analyses of 276 CITES species will be of interest.
The “frontier” Dari�en region in Eastern Panama is a
CITES hotspot, but is expected to experience substan-
tial human migration as farming land becomes scarcer
(Heckadon-Moreno 2009, IUCN 2017). For govern-
ment, S2BaK complements existing efforts, leveraging
the national forest inventory of Panama (Melgarejo
et al. 2015), to produce the most accurate estimates
available for plant distributions, and providing insight
into regions with low accessibility. For instance, our
results suggest indigenous and nonindigenous territo-
ries have similar average a-diversity, despite large dif-
ferences found in surveys.
We view our distributional estimates as the next step

in our understanding of biodiversity, rather than as the

final answer. While predictive accuracy may be difficult
to greatly improve, given the performance of S2BaK,
there are other worthwhile considerations. First, these
are correlational models, and alternative, well-fitting for-
mulations could suggest different driving factors. For
instance, many anthropogenic activities were not explic-
itly considered, but only included via correlations with
environmental or other factors (e.g., distance to roads).
Thus, Panama City could have lower a-diversity than
estimated here, as “built environments” were not
included as predictors. Instead, predictions should be
interpreted as “biodiversity potential” outside of anthro-
pogenic activities. Second, we recognize that the
burgeoning SDM literature offers many different proce-
dures on constructing SDMs (e.g., alternative SDM
approaches or pseudoabsence selection). We do not
focus on these debates, but instead provide the flexibility
to use diverse SDMs, and employed validation using sys-
tematic surveys as evidence of good predictive ability.
While survey data themselves may be imperfect, they
arguably are more robust to issues of bias and represent
the most reliable (if limited) data available for validation.
However, we acknowledge other analyses could provide
insight. For instance, we did not consider biotic interac-
tions. Nonetheless, predictions for individual species can
remain strong (as occurred in this system), if species
interactions correlate with the environment (Leung and
Bradie 2017). In brief, additional analyses could be
worthwhile, and should be considered in terms of (1)
improved predictive ability or (2) reinterpretation of pro-
cesses/predictors.
Here, we derived a powerful approach to spatial esti-

mation of biodiversity. We illustrated its utility using
current issues in Panama, and demonstrated the value of
integrating information from publicly available data-
bases. We make our distributional estimates of 6,280 spe-
cies available, which will serve as baseline information
for fundamental and applied scientific inquiry (http://
prism.research.mcgill.ca).
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