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Clustered versus catastrophic global 
vertebrate declines
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& Robin Freeman7

Recent analyses have reported catastrophic global declines in vertebrate populations1,2.  
However, the distillation of many trends into a global mean index obscures the 
variation that can inform conservation measures and can be sensitive to analytical 
decisions. For example, previous analyses have estimated a mean vertebrate decline 
of more than 50% since 1970 (Living Planet Index2). Here we show, however, that this 
estimate is driven by less than 3% of vertebrate populations; if these extremely 
declining populations are excluded, the global trend switches to an increase. The 
sensitivity of global mean trends to outliers suggests that more informative indices 
are needed. We propose an alternative approach, which identifies clusters of extreme 
decline (or increase) that differ statistically from the majority of population trends. We  
show that, of taxonomic–geographic systems in the Living Planet Index, 16 systems  
contain clusters of extreme decline (comprising around 1% of populations; these 
extreme declines occur disproportionately in larger animals) and 7 contain extreme 
increases (around 0.4% of populations). The remaining 98.6% of populations across 
all systems showed no mean global trend. However, when analysed separately, three 
systems were declining strongly with high certainty (all in the Indo-Pacific region) and 
seven were declining strongly but with less certainty (mostly reptile and amphibian 
groups). Accounting for extreme clusters fundamentally alters the interpretation of 
global vertebrate trends and should be used to help to prioritize conservation efforts.

Rapid global change is threatening species across the globe1. The quan-
tification of biodiversity trends is important to assess whether current 
investment is slowing or reversing declines, and to identify regions 
and taxa of concern. Although distilling disparate population trends 
into a single global index can focus attention on biodiversity trends2–4, 
simple metrics can distort the full picture.

Estimates of global biodiversity trends vary depending on their 
data and mathematical model. The most apocalyptic models gather 
extensive press coverage, even when based on controversial data (for 
example, ‘biological annihilation’5, which described trend estimates 
based largely on expert opinion; or ‘insect Armageddon’, which is based 
on data disputed by the original collectors6). However, even analyses of 
the best available data reach conflicting conclusions. An analysis of a 
global dataset of abundance time series of vertebrates estimated that, 
on average, vertebrate populations have declined by more than 50% 
since 1970 (Living Planet Index2 (LPI)); however, other global analyses 
found that the mean population size7,8 and species richness9,10 have 
remained stable over similar timeframes. Explanations for the discrep-
ancies have been proposed8,11–13, but not resolved.

One crucial consideration is that summary indices may be easily 
misinterpreted. Calculating the geometric mean across populations 
is the most common and straightforward approach, but is strongly 
influenced by extremes. To illustrate, imagine an ecosystem in which 

one population declined by 99%. Even if a second population increased 
50-fold or 393 populations increased by 1% (that is, a large net increase), 
a geometric mean would show a catastrophic 50% decline. Thus, a 
geometric mean decline of 50% could arise from substantial, wide-
spread loss that is occurring across many populations (we term this the 
‘catastrophic declines’ hypothesis) or from a few extremely declining 
populations (we term this the ‘clustered declines’ hypothesis). Both 
scenarios involve important conservation issues, but suggest vastly 
different underlying problems and require different mitigation strate-
gies14, thus distinguishing between them is of real-world importance.

We derive a Bayesian hierarchical mixture (BHM) model to distin-
guish between the catastrophic and clustered declines hypotheses. The 
model statistically separates population trends into extreme declines, 
typical trends and extreme increases (Fig. 1), while accounting for 
time-series size, within-population fluctuations, number of popula-
tions and among-population variance. We test declines in abundance 
for more than 14,000 vertebrate populations (from the LPI)15. We chose 
LPI data because of its large scope, because the data and analytical 
details were publicly available, and because previous analyses of these 
data suggested widespread, global declines2.

We first examined whether the previous estimate2 of a mean decline 
of more than 50% was sensitive to extreme populations: robust declines 
would support the catastrophic declines hypothesis, whereas high 
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sensitivity to a few populations would support the clustered declines 
hypothesis (Fig. 1). We then applied our BHM model to assess the evi-
dence for catastrophic or clustered declines globally and by region and 
taxonomy. Finally, we explore two additional conservation issues. First, 
we test whether declines occur disproportionately in larger animals 
(large animals tend to have lower reproductive rates), which might 
release small animals from predation16. Second, previous analyses 
often excluded time series with few data points10,12,17, but small time 
series make up most of the available data. We test the effects of their 
exclusion18.

Sensitivity of geometric mean to extreme populations
The geometric mean index that underlies the LPI analysis was highly sen-
sitive to extreme populations. Excluding only the 2.4% most-strongly 
declining populations (354 out of 14,700 populations) reversed the 
estimate of global vertebrate trends from a loss of more than 50% 
to a slightly positive growth (Fig. 2). Similarly, excluding 2.4% of the 
most-strongly increasing populations strengthened the mean decline 
to 71%. High sensitivity suggests that extreme populations are dispro-
portionately affecting global trend estimates, such that clusters of 
extreme population decline should be considered explicitly.

Evidence for clustered declines
Among the 57 domain–realm–taxon systems of the LPI, 16 systems con-
tained clusters of extreme decline and 8 contained clusters of extreme 
growth (of those, 3 systems are repeated, as they had both clusters of 
extreme decline and growth) (Fig. 3 and Supplementary Table 2). Together, 
clusters of extreme decline accounted for only 1% of populations across 
systems (2% of populations in the 16 systems in which they occurred). 
The mean population trend for extremely declining clusters across the 16 
systems was θ2 = −3.94, or approximately 98% loss per year, and deviated 
substantially from the mean trend of the primary cluster in those systems. 
Clusters of extreme growth accounted for 0.4% of populations across 
systems (2.4% in the 8 systems in which they occurred), with θ2 = 3.51, that 
is, an explosive 33× growth per year (Fig. 3 and Supplementary Table 2).

Extreme clusters showed some taxonomic and geographic patterns. 
The largest cluster of extreme declines was in Arctic marine mammals, 
accounting for 7.6% of populations in that system. However, mam-
malian systems generally had the fewest clusters of extreme decline 
(19% of 16 systems), followed by reptile–amphibian systems (21% of 14 
systems), whereas bird and fish systems had more clusters of extreme 
declines (31% of 16 and 45% of 11 systems, respectively) (Fig. 3). Clus-
ters of extreme decline occurred throughout the world, half of which 
occurred in marine realms, whereas extreme increases occurred more 
in temperate regions or terrestrial realms (Fig. 3).

Extreme population trends occurred predominantly in small time 
series. Excluding time series with fewer than 10 points not only removed 
all but two extreme clusters, but also removed 52% of the data (Sup-
plementary Table 3). The higher frequency of extreme trends among 
small time series was also apparent in the raw data (Fig. 4). Thus the 
decision of whether to include small time series will have large effects 
on the resulting estimates of global trends.

Body size was related to population trends. Larger species had three 
times more extreme declines than increases (15 compared with 5 clusters 
of extreme declines compared with extreme increases). Comparatively, 
smaller species had half as many (8) extremely declining and dispro-
portionately more (7) extremely increasing clusters (Supplementary 
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Fig. 1 | Stylized patterns of system-wide growth rates. a–e, Similar geometric 
mean population growth rates (log(Nt + 1/Nt)) can reflect contrasting systems.  
c, As a null model, systems can be stable (log-transformed growth rates centred 
around zero). Deviations can occur in multiple ways. a, b, Most populations in a 
system can be in substantial decline (catastrophic declines hypothesis) (a) or 
the system can have multiple clusters, in which the majority of populations 
show a distribution of growth rates centred around zero but with a small cluster 
of populations experiencing extreme declines (clustered declines hypothesis) 
(b). Each has the same metric of mean decline (vertical red line indicates a 1.5% 
annual decline, corresponding to a 50% loss over 50 years), even though most 
populations in b are stable. The converse can also happen; systems in which a 
small cluster of populations shows an extreme increase, but that show an 
otherwise stable distribution (d) or systems in which most populations 
increase (e) can also occur (vertical blue line indicates a 1.5% annual increase, 
corresponding to a doubling over 50 years).
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Fig. 2 | Effect of extreme populations on the global growth index. Removing 
a small fraction of extreme populations strongly influences the geometric 
growth index, using the LPI dataset. Each line represents a different number of 
removed populations, ranging from no removals (red line; all 14,700 
populations, which show a >50% mean decline) to removing 356 populations 
(yellow line, the removal of <2.4% of populations switches the global trend from 
negative to positive). A geometric growth index of 1 indicates no change 
(dashed horizontal black line).
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Table 4). Although size-specific models included fewer populations, 
especially for smaller species, the number of clusters was not uniformly 
lower (as might be expected given a reduction in power); therefore, the 
differential occurrence of extremely declining versus increasing clusters 
suggests that large animals are more vulnerable to extreme declines.

Evidence for catastrophic declines
In contrast to the extreme clusters, the primary clusters accounted for 
the vast majority (98.6%) of populations across the 57 LPI systems. The 

overall growth rate of primary clusters was close to zero: θ1 = −0.00035, 
corresponding to around 1.7% loss over 50 years, given a constant 
rate across populations and time (Fig. 5). In addition, in contrast to 
extreme clusters, primary cluster trends were robust to time-series 
size, as excluding series with fewer than 10 data points yielded a similar 
overall global trend (θ1 = 0.0043) (Extended Data Fig. 3).

Although the global BHM model reveals considerably more nuance 
than a geometric mean index, analysing across systems still masked 
important patterns. When systems were analysed separately (Supple-
mentary Table 2), primary population clusters were strongly declining 
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Fig. 3 | Population trends by taxonomic groups and realms. a, The terrestrial 
realm. b,The freshwater realm. c, The marine realm. Red and blue asterisks 
indicate the occurrence of extremely declining clusters (16 systems) and 
increasing clusters (8 systems), respectively. Distributions show the primary 
cluster in each system. Red, significant declines; blue, significant increases; 

orange, strong non-significant declines; green, strong non-significant 
increases; yellow, weak changes). Maps were created using ArcGIS software by 
Esri (ArcGIS and ArcMap are the intellectual property of Esri and are used 
herein under licence. Copyright © Esri. All rights reserved. For more 
information about Esri software, please visit https://www.esri.com).
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(θ1 < −0.015) with high certainty (95% credible intervals not overlapping 
zero) in three systems, all of which occurred in the Indo-Pacific realm 
(freshwater mammals, freshwater birds and terrestrial birds) (Fig. 3). 
This suggests that this region has the highest risk of system-wide 
declines and should be a conservation priority. By contrast, the pri-
mary cluster was increasing with high certainty in seven systems, six 
of which were in temperate regions. In addition, seven additional sys-
tems had strongly declining primary population clusters but with less 
certainty (95% credible intervals overlapped zero), four of which were 
amphibian or reptile groups. Finally, 14 systems showed strong but 
low-certainty increases, with no obvious taxonomic nor geographic 
patterns (Fig. 3).

Each primary cluster also contained variation among populations. 
In the 10 systems with significant or non-significant mean declines 
where θ1 < −0.015, 87% of the individual populations showed strong 
declines (Fig. 5). These 10 systems accounted for around 20% of the total 
global vertebrate populations, but for around 61% of strong declines. 
The multimodality observed in Fig. 5 was an outcome of aggregating 
unimodal primary clusters across systems, and suggests that there are 
heterogeneous stressor levels among systems (that is, similar principles 
to those that cause extreme clusters within systems). The remaining 
approximately 11% of strongly declining populations were distributed 
across 47 out of 57 systems; it is unclear whether they represent a devia-
tion from the natural dynamics that are expected to occur in any natu-
rally variable system.

Primary cluster trends were related to body size, but not as predicted. 
In comparison to the overall patterns for larger animals, the same sys-
tems showed significant declines and increases, but two additional 
temperate systems showed significant increases (Extended Data Fig. 4 
and Supplementary Table 4). Smaller species also appeared to decline 
more than larger species; there were 27 systems in which smaller spe-
cies had more-negative growth rates than larger species, compared 
with 18 systems in which the reverse was true. However, analyses of 
the smaller species were based on substantially fewer populations, 
and trends were generally not significant (Supplementary Table 4), 
so patterns remain tentative.

Discussion
By re-analysing a comprehensive dataset of global wildlife population 
trends, we show that previously estimated global declines are driven by 
a few extremely declining populations. Removing only 2.4% of declining 
populations reversed the estimated global trends from more than 50% 
mean decline since 1970 to a slightly positive growth. Our BHM model 
revealed that clusters of extreme decline are widespread and occur 
disproportionately in larger species, and that a few clusters of extreme 
increase also exist and occur disproportionately in smaller species. 
This is consistent with previous arguments of ‘trophic downgrading’16.

Clusters of extreme declines were largely due to small time-series 
datasets. However, neither random sampling error nor ‘saw tooth’ 
population dynamics (in which ultimately stable populations experi-
ence sudden declines followed by gradual increases) can fully explain 
this association (see Supplementary Information for a full discussion). 
Additional explanations are needed. Extreme trends could reflect tran-
sient populations that naturally leave or enter a survey area19, which 
could represent natural dynamics. Alternatively, researchers may stop 
sampling after populations become (close to) extirpated, although the 
converse has also been suggested20. A third possibility is that some 
regions experience both lower sampling effort and greater declines, 
such that poorly sampled datasets correlate with factors linked to 
vulnerability, such as lower national wealth or conservation invest-
ment. Understanding why small time series contain so many extreme 
declines is particularly important given that studies that did not find 
widespread declines often excluded short time series7,10,12, potentially 
reconciling divergent findings among studies.

Once extreme clusters were statistically separated, no global trend 
remained across typical populations (that is, primary clusters; 98.6% 
of populations). However, aggregating systems into one global trend 
hid important variation. Three systems, all of which occurred in the 
Indo-Pacific realm, showed widespread vertebrate declines across 
typical populations. Moreover, among typical populations smaller 
species may be faring worse than larger ones. Although these results 
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Fig. 5 | Populations in the primary clusters across all systems, after removal 
of extreme clusters. The primary cluster of each system is unimodal, but 
because systems are experiencing decline (or growth) heterogeneously, 
plotting distributions across systems shows multimodality. Histograms show 
significantly declining systems (red), strongly but not significantly declining 
systems (orange) and weak changes or increases (yellow). Vertical lines show 
thresholds for strongly declining (−0.015) and strongly increasing (+0.015) 
growth rates, corresponding to an approximate 50% loss or a doubling (over 50 
years), respectively. Distributions of primary clusters were calculated based on 
the mean and s.d. from the hierarchical model, and using the system-specific 
weights to adjust for species richness.
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were tentative given lower sample sizes and high uncertainty, this trend 
is contrary to common conservation assumptions and so merits addi-
tional research.

Our results emphasize an important point: biodiversity trends within 
and across regions and taxa are highly disparate. This probably reflects 
differences in both susceptibility and exposure to anthropogenic 
environmental change21–23. Unravelling this variation is imperative to 
understand in which regions biodiversity is threatened the most24 and 
which conservation actions promote stability or recovery. A productive 
global conversation about conservation requires that both scientists 
and media pay more attention to variation and resist the temptation 
of simple summary indices.

Shifting the message from ubiquitous catastrophe to foci of concern, 
also touches on human psychology. Continual negative and guilt-ridden 
messaging can cause despair, denial and inaction25,26. If everything is 
declining everywhere, despite the expansion of conservation measures 
in recent decades, it would be easy to lose hope. Our results identify 
not only regions that need urgent action to ameliorate widespread 
biodiversity declines, but also many systems that appear to be gener-
ally stable or improving, and thus provide a reason to hope that our 
actions can make a difference.
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Methods

Dataset
The publically available LPI dataset includes 15,241 vertebrate 
populations from 3,510 species15. When a species contained both 
finer-resolution estimates within a country (2,593 entries) and a 
country-wide aggregate, we excluded the country-wide aggregate 
(537 entries), yielding 14,700 populations. LPI groups species into 57 
systems defined by a combination of habitat domain (terrestrial, fresh-
water or marine), biogeographical realm (terrestrial/freshwater realms, 
Afrotropical, Nearctic, Neotropical, Palearctic, Indo-Pacific; marine, 
Arctic, Atlantic north temperate, Atlantic tropical/sub-tropical, Pacific 
north temperate, Indo-Pacific tropical/sub-tropical, South-temperate/
Antarctic) and taxonomic grouping (fish, Actinopterygii, Elasmo-
branchii, Holocephali, Myxini, Chondrichthyes, Sarcopterygii, Ceph-
alaspidomorphi; birds, Aves; mammals, Mammalia; herps, Amphibia, 
Reptilia) (Extended Data Figs. 5–8).

To analyse the effect of body size, we obtained information on each 
taxonomic group. Given the diversity of vertebrate groups in this 
dataset and the different conventions across groups, we used differ-
ent measures of body size for each taxonomic class on the basis of 
data availability. For birds (n = 1,397), mammals (n = 534) and reptiles 
(Squamata, n = 132; Testudines, n = 44; and Crocodylia, n = 16) we used 
estimates of the mass of the species (in grams) collated in an extensive 
comparative dataset27. When mass data were missing for a species (n = 14 
birds; n = 1 mammal; n = 25 reptiles), we estimated body mass as the geo-
metric mean of available mass estimates for species in that genus. For 
fishes (Chondrichthyes, Osteichthyes and Agnatha; n = 1,211), estimates 
of mass were scarce for most species, so we instead used estimates of 
total length or standard length (in centimetres), both of which were 
extracted from FishBase28 using the rfishbase R package29. These length 
estimates are an imperfect proxy for size (in terms of mass) given the 
variability in body plans across groups, but given the large amount of 
variation across these groups it suffices as a way to broadly categorize 
species into distinct size classes. For amphibians, we used estimates 
of snout–vent length (in millimetres) as our proxy for body size, as 
this is the most widely available metric of size across species. Data on 
snout–vent length for amphibian species (n = 175) were extracted from 
a comprehensive ecological trait dataset: AmphiBio30.

Sensitivity of the geometric indices to extreme population 
trends
The LPI analysis was based on a geometric mean approach, calculated 
by summing across log-transformed growth rates31. We recreated the 
geometric-mean-based analyses (see Supplementary Information 1a 
for full details and model formulation) and examined the sensitivity of 
the global estimate to extreme populations. We ordered populations 
and sequentially removed the largest observed decline, determin-
ing the effect of each removal on the global estimate of biodiversity 
loss. Low sensitivity would indicate that many or most populations 
are declining, supporting the catastrophic declines hypothesis. High 
sensitivity—that is, if removal of relatively few populations switched 
the strongly negative global trend to neutral or positive—would sup-
port the clustered declines hypothesis. For balance, we also examined 
sensitivity to sequential removal of the greatest increasing populations.

Catastrophic versus clustered declines approach
We developed an approach to separate extreme population clusters the 
growth or decline of which statistically deviated from typical popula-
tion trends, such that a small number of extreme populations would 
no longer mask trends of the majority of populations (Fig. 1). Although 
some summarization is needed to understand global trends, hetero-
geneous growth rates and potentially multimodal distributions could 
be expected, given multiple stressors with diverse effects, and differ-
ences in species vulnerabilities. We used a BHM model as our statistical 

architecture, as it has several desirable properties: (1) it can represent 
the null model and assess deviations from it; (2) it enables testing for 
both negative and positive extremes (sometimes both existed in the 
same system); (3) it quantifies the magnitude and proportion of those 
extremes; (4) it provides a coherent way to separate extreme popula-
tions from the majority of populations (the primary cluster), which 
enables tests of the clustered and catastrophic declines hypotheses; 
(5) it provides a measure of uncertainty as a direct outcome of analysis 
(through the posterior distribution); and (6) it accounts for population 
fluctuations and adjusts for the number of data points in the time series.

First, we specify the null model. Even in a system with no overall 
trend, we expect stochastic fluctuations in population size. We also 
expect some populations to be increasing or decreasing during any 
time interval, given complex, real-world ecological dynamics. Thus, 
the null model should include among-population heterogeneity, and 
therefore consists of a distribution of growth rates (Fig. 1c). Statistical 
deviations from this null model could be caused by a shift in the overall 
distribution, in which a system-wide mean growth <0 (that is, decline) 
could indicate a risk to the entire system, which would support the 
catastrophic declines hypothesis (Fig. 1a). Alternatively, statistical 
deviation from the null model could be caused by a few populations 
that experience extreme declines, which is consistent with the clustered 
declines hypothesis (Fig. 1b).

To specify our model, we begin with a standard Bayesian hierarchical 
formulation (that is, it does not yet contain mixtures of distributions). 
We define θ and τ as the system-wide mean and variance, respectively, 
of log-transformed growth rates across all populations in the system 
(that is, hyperparameters in Bayesian terminology). θ and τ determine 
the distribution of the log-transformed population trends (μi) and 
define the properties of the overall system. However, within-population 
dynamics are also occurring, and the log-transformed growth rates 
for population i at time t are modelled as a population trend (μi) and 
within-population fluctuations (σ) (see Supplementary Information 
1b for full details and model formulation).

Using a standard Bayesian hierarchical model, we can test the cata-
strophic declines hypothesis by determining the probability that a 
system-wide mean value of θ < 0. Testing the clustered declineshypoth-
esis, however, requires a mixture model to assess the evidence for the 
occurrence of clusters. Thus, we define K as the number of clusters in 
the mixture, fk is the fraction of populations in the kth cluster, and θ, τ 
and f denote the vectors of the parameters for the K clusters.

To test the clustered declines hypothesis, we modelled three clus-
ters: a primary cluster, corresponding to the typical trend; a negative 
extreme cluster; and a positive extreme cluster (Fig. 1). Although our 
main interest was in the mechanisms behind apparent global popula-
tion declines (that is, catastrophic versus clustered declines hypoth-
eses), we also assayed positive extreme clusters so that analyses were 
not biased to find only negative population trends. We considered four 
cluster combinations: (1) a single distribution; (2) a primary distribution 
and a negative extreme distribution; (3) a primary distribution and a 
positive extreme distribution; or (4) a primary distribution and both 
positive and negative extreme distributions (Fig. 1). For referencing 
purposes, we denote k = 1 as the primary cluster, k = 2 as the negative 
extreme cluster, and k = 3 as the positive extreme cluster. Reality need 
not be bi-modal (or tri-modal), but exploring generalities in trends 
necessitates some aggregation. Nonetheless, the extreme clusters 
identified by the mixture model could contain multiple extreme modes 
in the data (or even result from a skewed distribution). With any of these 
deviations, model selection would still choose the mixture model as 
explaining the data better than a single normal distribution (see Sup-
plementary Information 1c for full details and model formulation).

We used the (lowest) deviance information criterion value to select 
the mixture model with the strongest statistical evidence32. The cata-
strophic declines hypothesis would be supported by a mean decline 
of the primary population cluster (θ1 < 0 and credible intervals did not 



overlap zero), and would be particularly severe if the mean θ1 was also 
strongly negative (for example, θ1 = −0.015 would correspond to >50% 
loss over 50 years). The clustered declines hypothesis would be sup-
ported if the deviance information criterion selected a mixture with a 
negative extreme cluster (combinations 2 or 4 above). The catastrophic 
and clustered declines hypotheses are not mutually exclusive, as a sys-
tem could have both a negative extreme cluster and declining primary 
cluster. A large fraction of populations in the negative extreme cluster 
(f2) could also be interpreted as widespread catastrophic declines, but 
this did not occur in our results. Although our hypotheses focus on 
understanding declining trends, our model will also detect increases 
in abundances.

To estimate the model parameters, we used Bayesian analyses and 
the Markov chain Monte Carlo algorithm, which simultaneously esti-
mated uncertainty. For each Bayesian analysis, we ran 3 chains, each 
with 10,000 iterations (3,000 used for burn-in). Convergence was 
determined using R̂ ≈ 1. Values for all parameters across all systems 
ranged from R(0.999 < ˆ < 1.005). Bayesian analyses were conducted 
using the STAN language33, and processed and analysed in R34.

Additionally, we explored the theoretical behaviour of each model, 
including the geometric mean model, in the presence of clustered 
declines (Supplementary Information 1d, 2a), and our catastrophic and 
clustered declines approach given our selection of priors, application 
of constraints and other modelling choices; these simulation analyses 
showed that our approach yielded appropriate theoretical behaviour 
(Extended Data Fig. 1 and Supplementary Information 1e, 2b). Finally, 
we conducted sensitivity analyses and showed that results were robust 
to modelling choices (Extended Data Fig. 2, Supplementary Informa-
tion 2c and Supplementary Table 1).

Application of the catastrophic and clustered approach to LPI 
data
We tested for extreme clusters in each of the 57 domain–realm–taxon 
systems of the LPI, by choosing the mixture model with the lowest 
deviance information criterion value. We also examined the number of 
populations in each cluster, as a fraction of the total number of popula-
tions, scaled using LPI system-specific weightings35 (see Supplementary 
Information 1f for more details).

Next, we examined evidence for the catastrophic declines hypothesis 
in each system by searching for negative mean growth rates in the pri-
mary cluster (θ1). We defined ‘high certainty’ of decline (or increase) as 
95% credible intervals that did not overlap zero, and ‘strong’ decline as 
θ1 < −0.015, corresponding to a ~50% decline if it persisted for 50 years 
(θ1 > 0.015 was used for a strong positive relations, corresponding to a 
doubling over 50 years).

We assessed the effect of small time series on both extreme clusters 
and trends in primary clusters, by omitting all data with fewer than 
10 points, as has often been done in other studies12. These small time 
series accounted for 52% of the population estimates (7,110 populations 
remained in the analysis).

Finally, we examined whether trends differed between large- versus 
small-bodied animals. Within each class (but with Agnatha lumped 
with Osteichthyes), we scaled body size as standard deviations on the 
natural log scale—thus creating an index of relative species size within a 
taxonomic group. In two cases, we separated out different groups within 
a class that had relatively distinct body plans that would influence this 
size scaling. We scaled size within the superorder Batoidea (Rajiformes, 
Myliobatiformes and Torpediniformes) and separately scaled size for 
the rest of the chondrichthyans (Selachimorpha and Holocephali). For 

the amphibians, we separated out the orders Caudata and Anura and 
scaled size within each of these groups. For each taxonomic group, 
we scaled body size and separated species into larger-than-average 
(hereafter ‘larger’) versus smaller-than-average (hereafter ‘smaller’) 
species. This yielded 9,596 populations from 1,765 larger species, and 
5,103 populations from 1,745 smaller species. We then reran the BHM 
model for larger animals and again for smaller animals. Body sizes 
were divided unevenly among habitat domains and realms; 12 domain–
realm–taxon systems contained ≤1 smaller species so were excluded 
from the small-animal model.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data can be obtained from the LPI database (www.livingplanetin-
dex.org), AmphiBio30 (https://figshare.com/articles/Oliveira_et_al_
AmphiBIO_v1/4644424), FishBase (www.fishbase.org)28 and life-history 
traits can be obtained from the amniote life-history database27 (https://
doi.org/10.6084/m9.figshare.c.3308127.v1).

Code availability
Code for the BHM model is available at: https://doi.org/10.5281/
zenodo.3901586.
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Extended Data Fig. 1 | Theoretical analyses of BHM model. The p–p plots 
show that the posterior distributions for each estimated parameter are 
unbiased and largely follow a 1:1 line for each hyper parameter (σ, τ) as well as 

the fraction in each cluster ( f1, f2 = 1 − f1). The 1:1 line is the theoretic 
expectation, indicating that the true parameter value falls below the 0.01 
quantile 1% of the time, the 0.02 quantile 2% of the time, and so on.



Extended Data Fig. 2 | Sensitivity analyses of primary cluster trends. The 
trends of the primary clusters (θ1), for the main analysis (x axis) versus the 
sensitivity analysis ( y axis) for the threshold for extreme clusters (top) and the 
offset when n = 0 was observed (bottom).
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Extended Data Fig. 3 | Effect of small time series on primary cluster trends. 
Each point represents a trend estimate for the primary cluster of a system, with 
the full dataset (x axis) versus data excluding time series with less than 10 data 
points ( y axis). The red dot indicates the freshwater Indo-Pacific mammals, 
which was reduced from 22 populations (full) to 2 populations (only data with 
at least 10 data points).



Extended Data Fig. 4 | Mean trends of primary clusters across systems 
calculated using the BHM model. Top, all species (14,700 populations). 
Middle, only large species (9,596 populations). Bottom, only small species 
(5,103 populations). The small species appear to be declining more than large 
species, although this finding needs to be interpreted with caution, as most 
primary distributions did not significantly deviate from zero for small species.
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Extended Data Fig. 5 | Histograms of observed growth rates and output of 
the BHM model for systems 1–16. Blue line, primary cluster; red line, extreme 
cluster(s) from the model. Grey vertical lines show the range of observed 
values. In comparing the model output to the data we show the following. (1) 
The variation of the BHM primary cluster (blue line) is much lower than the raw 
data, because the BHM separates variation in among-population trends from 
variation due to within-population fluctuations. (2) The BHM model identifies 
evidence for extreme clusters in both directions (for example, terrestrial 

Indo-Pacific birds) or only one direction (for example, terrestrial Neotropical 
mammals), but not for other apparent clusters (for example, terrestrial 
Indo-Pacific herps). The BHM integrates the magnitude of within-population 
fluctuations, time-series sizes, number of populations, among-population 
variance, and the magnitude and frequency of the extreme populations in 
determining whether additional (extreme) clusters are needed to account for 
the observations.



Extended Data Fig. 6 | Histograms of observed growth rates and output of the BHM model for systems 17–32. Blue line, primary cluster; red line, extreme 
cluster(s) from the model. Grey vertical lines show the range of observed values. For further information, see Extended Data Fig. 5.
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Extended Data Fig. 7 | Histograms of observed growth rates and output of the BHM model for systems 33–48. Blue line, primary cluster; red line, extreme 
cluster(s) from the model. Grey vertical lines show the range of observed values. For further information, see Extended Data Fig. 5.



Extended Data Fig. 8 | Histograms of observed growth rates and output of the BHM model for systems 49–57. Blue line, primary cluster; red line, extreme 
cluster(s) from the model. Grey vertical lines show the range of observed values. For further information, see Extended Data Fig. 5.
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