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Abstract
Aim: Species distribution models (SDMs) are widely used predictive tools to forecast 
potential biological invasions. However, the reliability of SDMs extrapolated to exotic 
ranges remains understudied, with most analyses restricted to few species and equiv-
ocal results. We examine the spatial transferability of SDMs for 647 non-indigenous 
species extrapolated across 1,867 invaded ranges, and identify what factors may help 
differentiate predictive success from failure.
Location: Global.
Time period: Current.
Major taxa studied: Six hundred and forty-seven terrestrial species; eight taxonomic 
classes.
Methods: We performed a large-scale assessment of the transferability of SDMs 
using two modelling approaches: generalized additive models (GAMs) and MaxEnt. 
We fitted SDMs on the native ranges of species and extrapolated them to exotic 
ranges. We examined the influence of general factors and factors related to biological 
invasions on spatial transferability.
Results: Despite both modelling approaches performing well in the range of the spe-
cies used for fitting, we observed moderate to low spatial transferability on aver-
age (mean area under the receiver operating characteristic curve [AUC] ~  .7) when 
extrapolating to their invaded ranges. Transferability differed between taxonomic 
classes and invaded continents and was positively influenced by the performance of 
the model and environmental generalism in the native range, and the year of first 
record. Models performed worse with greater environmental coverage in the exotic 
range, gross domestic product and number of occurrences in the native range, geo-
graphic distance between ranges and when extrapolating to islands.
Main conclusions: After controlling for sampling bias, half of SDMs were only 
weakly predictive, which should affect how SDM-based forecasts are interpreted. 
Performance differed based on characteristics of the data, species, and ranges, and 
can suggest when SDMs may be reliable and when we should be most cautious. These 
considerations touch directly upon the potential use of SDMs for management of bio-
logical invasions. We discuss possible mechanisms of these findings.
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1  |  INTRODUC TION

Predicting species distributions within exotic ranges is critical to 
manage biological invasions (Elith, 2017) due to their severe effect 
on biodiversity (Bellard et al., 2016) and economic loss (Bradshaw 
et al., 2016). Given the increasing availability of large databases, spe-
cies distribution models (SDMs) have become the tool of choice for 
prediction (e.g., Lozier & Mills, 2011).

The challenges of developing SDMs as predictive tools have been 
summarized in recent publications (Sequeira et al., 2018; Werkowska 
et  al.,  2017; Yates et  al.,  2018), noting that the transferability of 
SDMs is largely unknown, within both spatial and temporal contexts. 
Our focus is on the former, where most direct analyses of spatial 
transferability to exotic ranges have been restricted to few species 
or taxonomic groups [e.g., Beaumont et al.  (2009) examined three 
plant species; Goncalves et al.  (2014) examined one plant species; 
Peterson et al. (2003) examined four plant species; Hill et al. (2017) 
examined 22 insect species]. Moreover, there has been a lack of con-
sensus on whether SDMs are transferable, as studies have had vary-
ing success in extrapolating across time and space (e.g., Beaumont 
et  al.,  2009; Goncalves et  al.,  2014; Morán-Ordóñez et  al.,  2017; 
Petitpierre et al., 2012), the latter of which is relevant for the predic-
tion of biological invasions. Recent advances have been made by Liu 
et al. (2020), using meta-analyses for 235 invasive species, and found 
poor overall spatial transferability. However, SDMs vary widely in 
how they are constructed. For example, presence-only records can 
be heavily affected by non-random sampling, where the majority of 
studies using such data likely suffer from sampling biases, and rarely 
control for these concerns (Yackulic et  al.,  2013). Whether these 
accurately measure transferability is therefore unclear. Likewise, 
model building and quality control vary between studies (e.g., crite-
ria for inclusion of data points), making comparability difficult. Thus, 
building many SDMs with consistent formulations would be useful to 
provide the most rigorous analysis of transferability possible.

Comparability across SDMs is particularly important when iden-
tifying factors that may influence model transferability. Putative 
factors include: habitat-generalist species, which may lead to poorer 
transferability as they may not be constrained by the environmental 
factors considered (Brotons et  al.,  2007), taxonomic groups given 
differences in biological traits (Urban et al., 2016; Yates et al., 2018), 
data quality (Yates et  al.,  2018), model complexity (Werkowska 
et  al.,  2017), statistical approach (Yates et  al.,  2018), stochasticity 
given small sample sizes (Yates et al., 2018), and the choice of pre-
dictors (Petitpierre et al., 2017).

Beyond these general issues, some factors may be particularly 
relevant for biological invasions. Species may still be spreading 
within their introduced range (Václavík & Meentemeyer, 2011), vi-
olating the underlying assumption of SDMs that species are in equi-
librium (Araújo & Peterson, 2012; Guisan & Thuiller, 2005). As the 
invasion progresses, species spread to a greater fraction of suitable 
sites (i.e., ‘exposure’). Thus, we predict that older invasions, which 
should have higher exposure, should be closer to equilibrium and 
show stronger SDM performance (Leung et  al.,  2012; Runquist 

et al., 2019). Analogously, exposure should increase with propagule 
pressure (the frequency of introduction events and number of in-
dividuals introduced, potentially to multiple locations within an in-
vaded range; Lockwood et al., 2005). Higher trade should transport 
more organisms to a greater number of locations, allowing greater 
opportunity to spread within a range. Thus, we predicted a positive 
relationship between transferability and macro-economic metrics 
such as gross domestic product (GDP) of native and exotic regions, 
which have both been shown to jointly determine trade and thus 
propagule pressure between source and destination countries 
(Sardain et al., 2019).

Non-analogous environments could also affect transferability, if 
models fitted on truncated curves fail to predict species responses 
to new conditions (Yates et  al.,  2018). This is particularly relevant 
as invasive species are introduced to disjoint ranges. Thus, we pre-
dicted a positive relationship between transferability and environ-
mental similarity between native and exotic ranges. Likewise, we 
predicted an inverse relationship between spatial transferability 
and geographic distance, given increasing environmental, biotic, or 
human differences. Finally, we also hypothesized lower transfer-
ability to islands. Islands differ from mainland areas by higher lev-
els of endemism, lower species richness and restricted land areas 
(Kier et al., 2009), suggesting non-analogous conditions. Moreover, 
impacts often differ between island and mainland invasions (Spatz 
et  al.,  2017), suggesting ecological differences at play. Identifying 
which locations (e.g., islands or mainlands), types of species (e.g., 
generalists or specialists) and conditions (e.g., non-analogous envi-
ronments) where SDMs may be reliable would provide critical infor-
mation for conservation purposes in invasion biology (Werkowska 
et al., 2017).

The objectives of this study were to (a) evaluate the capacity of 
SDMs to predict species distribution when extrapolated to exotic 
ranges, and (b) identify factors that may influence model transfer-
ability. We constructed SDMs on the native range of 647 terrestrial 
species across 8 taxonomic classes and analysed model transferabil-
ity to exotic ranges. We provided the most systematic (controlling 
for issues such as sampling bias and quality control) and extensive 
analysis of native to exotic range transferability to date (extrapo-
lating to 1,867 exotic ranges), and identified several predictors of 
transferability, relevant for invasive species management.

2  |  METHODS

To assess the transferability of SDMs, we fitted models for species 
on their native range and extrapolated them to their exotic ranges 
(Figure 1). Background sites were sampled using the ‘target-group back-
ground’ approach (TGB; Phillips et al., 2009) within ranges to account 
for biases associated with presence-only data. We assessed the trans-
ferability of SDMs to invaded ranges in terms of discriminatory power 
and examined several potential predictors of model success (Table 1). 
All analyses were performed in R (R Core Team, 2019). Descriptions 
of the datasets used are provided in Supporting Information Table S1.
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2.1  |  Environmental data

We included environmental predictors that are available globally 
and frequently used in SDM literature. We used bioclimatic vari-
ables from WorldClim version 2 at 2.5-arcmin resolution (~  5-km 
grid size; Fick & Hijmans, 2017). We included three variables in addi-
tion to the bioclimatic predictors: elevation and terrain ruggedness 
index (TRI; Riley et al., 1999) at 2.5-arcmin resolution, and maximum 
annual normalized difference vegetation index (NDVI) at 3-arcmin 
resolution. Elevation and topography have been shown to drive 
many ecological processes affecting species distributions (Wang 
et al., 2017). TRI is a measure of topographic heterogeneity calcu-
lated as the mean elevation difference between neighbouring cells 
within the gridded data (using the ‘terrain’ function in the ‘raster’ 

package; Hijmans et  al.,  2015), which may reflect the number of 
available habitats as they vary across elevations (Riley et al., 1999). 
NDVI is an index of vegetation cover (‘greenness’) that has been 
used as surrogate for habitat quality (Pettorelli et al., 2011) and land 
cover changes (Lunetta et  al.,  2006). We calculated NDVI as the 
maximum values across months within a year for a given cell, aver-
aged across all available years (2000 to 2020). Topographic and veg-
etation predictors are globally available and have been widely used 
in SDMs (Morán-Ordóñez et al., 2017; Wen et al., 2015). Elevation 
data were downloaded from WorldClim (Fick & Hijmans, 2017), and 
Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI 
data were downloaded through National Aeronautics and Space 
Administration (NASA) Land Processes Distributed Active Archive 
Center (Didan, 2015).

F I G U R E  1  Flow chart outlining the analyses performed in the study. AUC, area under the receiver operating characteristic curve; LMM, 
linear mixed-effects model; SDM, species distribution model
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Prior to model fitting, we accounted for collinearity by removing 
highly correlated variables across all cells globally using a threshold 
pairwise correlation coefficient value of |r| > .7. After excluding col-
linear variables, the reduced set was used in all SDMs: annual mean 
temperature (bio1), mean diurnal range (mean of monthly maximum 

and minimum temperatures; bio2), temperature annual range (bio7), 
mean annual precipitation (bio12), precipitation seasonality (coeffi-
cient of variation; bio15), elevation, TRI and maximum annual NDVI. 
All variables were standardized to a mean of zero and standard de-
viation of one.

TA B L E  1  Full list of variables and acronyms used to predict the transferability of species distribution models (SDMs), with a description of 
how the factors were generated. Rationale for why each factor may influence SDM transferability is provided for each factor, with sources. 
Variables marked with an asterisk (*) denote factors generated for both the native and exotic ranges

Variable (acronym) Description Rationale

AUC, native (NAUC) Performance of the SDM on its own range 
measured as AUC, using 10-fold cross-
validation. Logit-transformed

Models that fail to characterize their own range 
are likely to fail when extrapolating to new 
environments (Morán-Ordóñez et al., 2017)

Number of occurrences, native 
(NOCC) and exotic (EOCC)*

Number of occurrences used to fit or validate 
the model. Multiple occurrences found in a 
single cell were counted as a single occurrence. 
Log-transformed

Ranges with small sample sizes may fail to 
capture complex ecological relationships and 
be prone to stochasticity, leading to increased 
parameter uncertainty and unstable results 
(Wisz et al., 2008; Yates et al., 2018)

Continent (CONT) Nominal variable of the invaded continent. Multi-
continental invasions were treated as their 
own level

Generalities in environmental conditions and 
biotic composition within large regional 
areas, as well as differences in quality of 
invasive species records and biodiversity 
information (Pyšek et al., 2008) may affect 
SDM transferability.

Taxonomic class (CLASS) Nominal variable of the species’ taxonomic class SDM transferability may differ between groups 
of species, or their habitat, which may share 
similar characteristics (Regos et al., 2019)

Environmental breadth, native (NEB) Convex hull area of occurrence points projected 
into environmental principal component 
analysis (PCA) space. Log-transformed

Generalist species may not be restricted by 
the environmental factors considered in 
the SDM, resulting in poor transferability 
(Brotons et al., 2004; Zhang et al., 2015)

Environmental coverage, native (NEC) 
and exotic (EEC)*

Proportion of total environmental space of the 
background sites and occurrences occupied by 
only the occurrences

A large environmental coverage may lead to 
SDMs being unable to distinguish between 
presences and their background environment 
(Brotons et al., 2004; Zhang et al., 2015)

Gross domestic product, native 
(NGDP)

Sum of the GDP of all defined regions in the range. 
Log-transformed

Increased propagule pressure (e.g., through 
trade) may lead to increased dispersal 
to all suitable locations for a given range 
(‘exposure’), resulting in species closer to 
equilibrium with their environment (Leung 
et al., 2012; Lockwood et al., 2005)

Year of first record (YEAR) Earliest recorded occurrence of the species within 
the defined invaded range

Newer invaders may still be spreading, and 
not yet reached all suitable habitats, 
violating assumptions of equilibrium (Runquist 
et al., 2019)

Geographic distance between ranges 
(DIST)

Haversine distance (in km) between the centroids 
of the native and exotic ranges, including 
background environment

Species may experience new environmental 
conditions or community compositions 
outside of the range in the fitting data leading 
to unpredictable responses (Werkowska 
et al., 2017; Yates et al., 2018)

Environmental similarity between 
ranges (ESIM)

Proportion of negative multivariate environmental 
similarity (MES) values in the exotic range with 
the native range as reference sites

Island, native (NISL) and exotic (EISL)* Binary predictor on whether all occurrences were 
found on an island (1) or not (0). Native and 
exotic

Ecological characteristics of islands differ 
significantly from the mainland—higher 
endemism, lower species richness and 
restricted distributions—and may greatly 
affect species distribution (Kier et al., 2009)

Abbreviation: AUC, area under the receiver operating characteristic curve.
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2.2  |  Species data

We obtained occurrence records from the Global Biodiversity 
Information Facility (GBIF, 2020; Supporting Information Text S1), 
and gridded them to the environmental data (at 2.5-arcmin reso-
lution). We removed all records without associated environmental 
data, and grid cells containing multiple occurrences were counted 
as a single presence. We filtered out records with listed geospatial 
issues within GBIF and coordinate uncertainty greater than 5  km 
(the resolution of our environmental data). We applied standardized 
cleaning using the ‘CoordinateCleaner’ package (Zizka et al., 2019), 
which removed any records with equal or zero/zero coordinates, 
found in urban areas, near biodiversity institutions, outside of their 
listed country, or at the centroids of countries and its subdivisions. 
We excluded sightings dated before 1970 to match the temporal 
resolution of our environmental datasets (therefore, occurrences 
ranged between 1970 and 2020).

Species occurrences were classified as either native or exotic at 
the country level using the Centre for Agriculture and Bioscience 
International (CABI) Invasive Species Compendium (CABI,  2020) 
and the International Union for Conservation of Nature (IUCN) 
Global Invasive Species Database (GISD, 2015). We defined ‘re-
gions’ and ‘ranges’ as physical areas and the contiguous geographic 
extent of the species, respectively. Regions were generated at the 
sub-national level (state/province/equivalent), using the Global 
Administrative Areas Database (2018). Exotic ranges were defined 
as the set of contiguous regions (that is, regions that share a land 
border with each other) containing at least one occurrence point. 
Therefore, an SDM fitted on the native range for a species may be 
extrapolated to one or more exotic ranges, each comprising one or 
more connected regions. Records were excluded in regions where 
the species was considered both native and exotic, or not classified. 
Ranges (both native and exotic) with fewer than 20 occurrences 
were excluded to avoid overfitting. The species included in the 
study, along with relevant taxonomic information are presented in 
Supporting Information Table S2.

2.3  |  Background environment selection

SDMs were fitted using presence-background data within the na-
tive range of the species, and evaluated by extrapolating to one or 
more invaded ranges, also comprising presences and background 
sites. We sampled up to a maximum of 10,000 background sites for 
each fitting set and separately for each validation set (Barbet-Massin 
et al., 2012; Capinha et al., 2011). While the number of background 
points included in the model affects the absolute probabilities of 
prediction, the likelihood of presences could still be interpreted in a 
relative manner, termed discrimination (Pearce & Boyce, 2005). We 
used the ‘target-group background’ approach to select our back-
ground sites (TGB; Phillips et al., 2009) by randomly sampling GBIF 
records within the same range and belonging to the same taxonomic 
class as the species of interest (see Supporting Information Table S3 

for the GBIF DOIs). This accounted for observation biases associated 
with presence-only data by mimicking the sampling approach of the 
occurrence records. We set a minimum requirement of 4,000 back-
ground sites, to remain large enough to estimate the background dis-
tributions of environmental conditions (excluding 38 species from 
the analyses). We applied the same data cleaning procedure to our 
target-group background sites as the occurrence records.

2.4  |  Modelling species distributions

We applied two modelling approaches as the framework of the 
SDMs in this study: generalized additive models (GAMs; Hastie 
& Tibshirani,  1990; using the ‘mgcv’ package in R; Wood,  2017) 
and MaxEnt (Phillips et  al.,  2006; using the ‘maxnet’ package in 
R; Phillips, 2017). GAMs and MaxEnt both attempt to account for 
complexity by allowing nonlinear fitting, albeit through differing 
algorithms, with GAMs using ‘smooth functions’ and MaxEnt using 
‘transformed features’, described below. For GAMs, nonlinear rela-
tionships (the ‘smooth’ terms in the model) are defined by segments 
specified by the number of knots, each of which may have their own 
polynomial functional form.

Where yij is the binary presence or background at site i and spe-
cies j, and x1,i … xm,i are the m continuous climatic predictors with 
smoothing terms s. We used a maximum of five knots to allow each 
smoothing function to remain flexible, but computationally efficient. 
To prevent overfitting, we allowed terms to be excluded by setting 
the ‘select’ argument to true within the ‘gam’ function. Additionally, 
we removed variables showing concurvity, the nonlinear exten-
sion of multicollinearity for GAMs (Buja et al., 1989; Morlini, 2006). 
We applied the ‘concurvity’ function from the package ‘mgcv’ 
(Wood, 2017) to remove the predictor with the highest ‘worst’ case 
concurvity value. We refit the GAM, iterating this procedure until all 
concurvity values were less than .8.

MaxEnt is a machine learning method designed specifically for 
presence-background modelling (Phillips et  al.,  2006; Phillips & 
Dudík, 2008). MaxEnt estimates the distribution across geographic 
space with the greatest spread (i.e., maximum entropy) in relation 
to the environmental variables, and can fit increasingly complex 
models through the use of the ‘transformed features’ of variables 
(of different classes, including linear, quadratic, product and hinge 
features), constrained using regularization. Like GAMs, MaxEnt may 
be subject to similar issues of overfitting given its flexible modelling 
procedures. To reduce possible overfitting, we limited the model 
complexity to only include linear, quadratic and product features 
(Merow et  al.,  2014). We used the default arguments in ‘maxnet’ 
(Phillips, 2017) for the rest of the settings, with the regularization 
applied.

(1)zij = b0 + s
(

x1,i
)

+ s
(

x2,i
)

+ . . . + s
(

xm,i
)

(2)yij =
1

1 + e−zij
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To estimate model performance, we used the area under 
the receiver operating characteristic curve (AUC; Hanley & 
McNeil,  1982). An AUC value of 1 indicates perfect discrimina-
tion, while a value of .5 indicates discrimination no better than 
chance. We compared AUC in the fitted range against AUC in the 
exotic ranges, to determine transferability. We considered AUC 
values greater than or equal to .7 to have useful model perfor-
mance (Morán-Ordóñez et al., 2017; Swets, 1988). While several 
authors have criticized the use of AUC due to the equal weighting 
of omission and commission errors (Jiménez-Valverde, 2012; Lobo 
et al., 2007), AUC remains one of the most commonly used met-
rics of discrimination for SDMs and is suited for the relative be-
haviour of presence-background models (Phillips et al., 2006). We 
considered the continuous Boyce index (CBI; Hirzel et al., 2006), 
but using simulation analyses we found that CBI was sensitive to 
the proportion of unsampled presences, while AUC was robust 
(Supporting Information Text S2, Figure  S1). Therefore, we only 
report the AUC in the main text (but provide the CBI results in 
Supporting Information Text S2).

2.5  |  Predictors of SDM transferability

We examined several factors based on characteristics of the SDMs 
and species that may relate to model transferability in general, as 
well as characteristics related specifically to biological invasions 
(Table 1). We included AUC in the native range (based on 10-fold 
cross-validation) as a predictor of model transferability to invaded 
ranges. We considered the number of occurrences used to fit the 
model, as models with few sample points may lead to the species–
environment relationships being poorly captured (Wisz et al., 2008). 
We included the number of occurrences in the exotic range, as sto-
chasticity may also lead to poor predictive performance, particularly 
at low numbers (Yates et al., 2018). To examine generalities within 
large geographic areas, we included the invaded continent as a cat-
egorical predictor. Multi-continental invasions were treated as a 
unique level within the factor (for example, an invaded range oc-
cupying both Asia and Europe was treated as its own level). We con-
sidered differences in transferability between taxonomic classes, 
which were obtained using the ‘taxize’ package in R (Chamberlain 
& Szöcs, 2013).

We examined the effects of ecological generalism on trans-
ferability (Brotons et  al.,  2004; Zhang et  al.,  2015) using two 
environment-based predictors: environmental breadth and envi-
ronmental coverage (Supporting Information Text S3). We quanti-
fied the environmental breadth and coverage of each native species 
distribution by projecting the occurrence cells, as well as the back-
ground environment cells into a two-dimensional environment space 
using principal component analysis (PCA; Pearson, 1901). The envi-
ronmental breadth of a species was defined as the area of the envi-
ronment space encompassing the occurrences in the native range, 
representing their specialization. Environmental coverage was 
calculated by dividing the environmental breadth of the projected 

occurrences by the environmental breadth of all cells in the range 
(i.e., the occurrence and background cells combined; Supporting 
Information Figure S2). We incorporated environmental coverage to 
estimate how much of the available environment the species occu-
pied, where high environmental coverage may result in an SDM that 
cannot distinguish between occurrences and background sites.

We expected species to be farther from equilibrium, with lower 
exposure (i.e., lower propagule pressure and more recent invasions) 
resulting in distributions being driven by other factors besides envi-
ronmental constraints (Leung et al., 2012; Runquist et al., 2019). We 
used GDP as a proxy of propagule pressure, which is strongly cor-
related with human-mediated transport of invasive species (Sardain 
et al., 2019). The GDP of the range was calculated using the sum of 
all cells within its regions using a gridded GDP dataset (at 5-arcmin 
resolution) provided by Kummu et al. (2018). We also examined time 
since invasion, using the year of first record within an invaded range 
as a surrogate, using all invasions since 1700 from the first records 
database by Seebens et al. (2017), and supplemented with the earli-
est recorded GBIF presence for that species and range (GBIF, 2020).

As transferability may be influenced by non-analogous condi-
tions when extrapolating (Yates et al., 2018), we examined the dis-
similarity between the native and exotic ranges using geographic 
and environmental distances as well as islands versus mainlands. 
We calculated geographic distances as Haversine distance (in kilo-
metres) between the centroids of the native and exotic ranges with 
background environment points included. Additionally, we com-
pared ranges using a multivariate environmental similarity (MES) 
surface (Elith et  al.,  2010). MES values measure the similarity of 
a given point to a set of reference points for each environmental 
predictor, providing a continuous measure with positive values in-
dicating environmental similarity and negative values indicating dis-
similarity (Elith et al., 2010). We calculated environmental similarity 
as the proportion of negative MES values in the exotic range with 
the native range as reference sites and the environmental predictors 
used to fit the SDMs, using the ‘MESS’ function from the ‘modEvA’ 
package (Barbosa et al., 2013). For our analysis of islands, each range 
was classified as island or mainland based on whether all its regions 
were contained within the global shoreline vector and islands data-
base by Sayre et al. (2018).

We included all predictors in a ‘transferability model’, examining 
the potential factors that influence the predictive success of SDMs 
in the exotic range measured as AUC for the invaded range as the re-
sponse variable. The transferability model was generated as a linear 
mixed-effects model (LMM; Breslow & Clayton, 1993) for GAMs and 
MaxEnt separately, using the ‘lmer’ function from the ‘lme4’ package 
(Bates et al., 2015). We included species as a random effects factor, 
as species could invade multiple disjoint ranges. Nominal variables 
use one level of the factor as reference, which we set as Mammalia 
and North America for taxonomic class and continent, respectively. 
Continuous variables were scaled to a mean of zero and standard 
deviation of one to allow comparability between fitted model pa-
rameters. Native and exotic AUC values were logit-transformed, 
while the number of occurrences, environmental breadth and GDP 
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were log-transformed (Table  1). We identified (and removed) mul-
ticollinear variables using a variance inflation factor (VIF), which 
quantifies the level of multicollinearity by regressing each predic-
tor against the rest (Kock & Lynn,  2012). We used a conservative 
threshold of VIF ≥ 5, using the ‘vif’ function within the ‘car’ pack-
age in R (Fox & Weisberg, 2019). Consequently, two predictors were 
excluded: environmental breadth and GDP in the exotic range. We 
excluded species locations that did not have available data for the 
factors, resulting in 647 species and 1,867 species–location com-
binations. The vast majority of species in the analyses were plants 
(Supporting Information Table S2), comprising 591 of the 647 spe-
cies and 4 of the 8 classes (Liliopsida, Magnoliopsida, Pinopsida, 
and Polypodiopsida). Other classes were examined, consisting of 12 
mammals (Mammalia), 21 birds (Aves), 19 insects (Insecta) and 4 rep-
tiles (Reptilia). We reported the R2 following Nakagawa et al. (2017) 
for the LMMs to provide the conditional (the variance explained by 
both the fixed and random factors) and marginal (the variance ex-
plained solely by the fixed factors) R2 values.

We used the transferability model to identify where SDMs 
showed predictive success and where they did not. To communicate 
the contexts for strong/weak transferability more concretely, we 
discretized the 1,867 species–location extrapolations, and examined 
pairwise combinations of significant predictors. Higher-order combi-
nations were not considered as the number of data points declined 
rapidly. We examined the AUCs in the exotic ranges for models cate-
gorized by the best and worst group for categorical variables, and the 
upper versus lower quantiles for continuous variables. We defined 
‘generalist’ and ‘specialist’ species by the upper and lower quantiles 
of environmental breadth, respectively. High and low environmental 
coverage were 42.3 and 20.2%, respectively. High and low native 
range GDP were defined as 24.7 trillion and 3.94 trillion USD, while 
near and far geographic distances were 7,848 and 14,824  km, re-
spectively. High and low numbers of occurrences within the native 
range were 3,302 and 170, respectively. We selected other high and 
low thresholds for variables when there was a rationale: for native 
AUC, we used thresholds of .8 and .7 as upper and lower values, 
respectively, as these have previously been identified as ‘strong’ and 
‘weak’ (Hosmer et al., 2013; Morán-Ordóñez et al., 2017), and used 
1970 as the threshold for the year of first record to separate recent 
versus older invasions, which was also the start date of most of our 
environmental data.

3  |  RESULTS

3.1  |  Species distribution modelling performance

Both SDM approaches, GAM and MaxEnt, were able to accu-
rately discriminate between presences and background sites in the 
range used for fitting when tested using 10-fold cross-validation 
(Figure 2). GAMs had a mean AUC of .811 (n = 647; standard de-
viation SD = 0.075) when predicting the native range, while MaxEnt 
models performed slightly better within the fitting (native) range 

with a mean AUC of .827 (n = 647; SD = 0.070). However, when ex-
trapolated to one or more exotic ranges, a significant drop in model 
performance was observed with both model approaches performing 
similarly (Figure 2). The extrapolated GAMs had a mean AUC of .699 
(n = 1,867; SD = 0.127), while MaxEnt models had a mean AUC of 
.692 (SD = 0.123). Roughly half of model extrapolations were poor, 
where 981 (52.5%) and 1,022 (54.7%) predicted exotic ranges had 
AUC values below .7 for GAMs and MaxEnt, respectively. Four hun-
dred and sixteen (22.3%) and 445 (23.8%) predictions had AUC val-
ues between .7 and .8, and 470 (25.2%) and 400 (21.4%) predictions 
had AUC values greater than .8, for GAM and MaxEnt, respectively.

3.2  |  Predictors of model performance

The transferability model for GAMs, fitted using LMM had a mar-
ginal R2 value of .240, and a conditional R2 value of .334. The trans-
ferability model for MaxEnt models explained less variation, with a 
marginal R2 value of .183 and conditional R2 value of .239. Of the 
14 fixed effects used to characterize model transferability, 10 pre-
dictors were significant within the transferability models fitted for 
either GAMs or MaxEnt (Table 2; Figure 3; Supporting Information 
Tables S4 and S5).

We found that higher discriminatory ability (AUC) in the na-
tive range was positively related to AUC in the exotic range, as ex-
pected (Table 2; Figure 3). Additionally, the number of occurrences 
within the native ranges was negatively related to model perfor-
mance for GAMs, contrary to our hypotheses. Transferability var-
ied geographically, with significant differences between continents 
(Table 2; Figure 4; Supporting Information Table S6). SDMs showed 
the lowest average transferability in Asia, with mean AUCs of .651 
(SD = 0.108; n = 163) and .659 (SD = 106) for GAM and MaxEnt, 
respectively, and highest in North America, with mean AUCs of .734 
(SD = 0.132; n = 514) and .713 (SD = 0.129). South America, Africa, 
Europe, and Oceania showed mean AUCs of .653 (SD  =  0.109; 
n = 152), .661 (SD = 0.109; n = 204), .675 (SD = 0.118; n = 252) and 
.718 (SD = 0.129; n = 582) for GAMs, and .659 (SD = 0.103), .664 
(SD = 0.106), .665 (SD = 0.112) and .713 (SD = 0.130) for MaxEnt 
models, respectively. Multi-continental invasions comprised 127 
ranges, with mean AUCs of .659 (SD = 0.103) and .665 (SD = 0.110) 
for GAMs and MaxEnt, respectively.

The transferability of the SDMs differed significantly between 
taxonomic classes for both GAMs and MaxEnt (Tables  2 and 3). 
Mammals, insects, and birds had the lowest discriminatory perfor-
mance when predicting the invaded range. Mammals had mean AUCs 
of .645 (n = 26; SD = 0.121) and .655 (SD = 0.108) for GAMs and 
MaxEnt, respectively, while insects had mean AUCs of .692 (n = 34; 
SD = 0.122) and .663 (SD = 0.122). Birds also showed poor transfer-
ability, with mean AUC values of .663 (n = 49; SD = 0.131) and .673 
(SD = 0.116) for GAMs and MaxEnt, respectively, while plants had 
overall means of .701 (n = 1,752; SD = 0.127) and .693 (SD = 0.123) 
across the four classes. Although reptiles performed well with mean 
AUC values of .768 (SD = 0.143) and .818 (SD = 0.110) for GAMs and 
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MaxEnt, respectively, only four species and six extrapolated species 
locations were examined.

As expected, SDMs performed worse when species had a larger 
environmental coverage in the exotic range. Conversely, SDMs for 
generalist species with larger environmental breadths in their na-
tive range performed better when extrapolating to new ranges, 
contrary to our hypotheses (Table 2; Figure 3). Also contrary to our 

hypotheses, models fitted on native ranges with larger GDPs tended 
to perform worse (Table 2; Figure 3), as did older invasions based on 
the year of first record, although only in MaxEnt models (GAMs were 
nearly significant with p = .114).

SDMs tended to perform worse when extrapolated across larger 
geographic distances, as predicted (Table 2; Figure 3). In contrast, 
the degree of environmental similarity did not significantly relate to 

F I G U R E  2  Density histogram of the performance of generalized additive models (GAMs; a) and MaxEnt (b) measured as area under the 
receiver operating characteristic curve (AUC) when predicting the native range, or fitting dataset (purple), using 10-fold cross-validation and 
when extrapolating to the exotic range, or validation dataset (pink)

TA B L E  2  Estimated model parameters, with standard error, t value and p values of the fixed effects for the linear mixed model fitted 
using the full dataset for generalized additive models (GAMs) and MaxEnt with taxonomic class as a categorical predictor. An asterisk (*) next 
to the p values denotes significance

Variable

GAM MaxEnt

Estimate SE t statistic p value Estimate SE t statistic p value

AUC, native (NAUC) 0.070 0.020 3.495 <.001* 0.065 0.019 3.469 <.001*

Number of occurrences, native (NOCC) −0.059 0.028 −2.078 .039 * 0.010 0.026 0.395 .693

Number of occurrences, exotic (EOCC) 0.007 0.021 0.337 .737 0.019 0.021 0.879 .380

Continent (CONT) NA NA NA <.001* NA NA NA <.001*

Taxonomic class (CLASS) NA NA NA .036* NA NA NA .002*

Environmental breadth, native (NEB) 0.155 0.032 4.890 <.001* 0.148 0.030 4.887 <.001*

Environmental coverage, native (NEC) 0.035 0.033 1.076 .284 −0.024 0.030 −0.779 .437

Environmental coverage, exotic (EEC) −0.213 0.020 −10.683 <.001* −0.189 0.020 −9.640 <.001*

GDP, native (NGDP) −0.079 0.028 −2.861 .004* −0.051 0.026 −1.976 .048*

Year of first records (YEAR) 0.027 0.017 1.584 .114 0.034 0.017 2.051 .041*

Geographic distance (DIST) −0.067 0.019 −3.548 <.001* −0.039 0.019 −2.105 .035*

Environmental similarity (ESIM) 0.008 0.019 0.415 .679 0.002 0.019 0.118 .907

Island, native (NISL) −0.116 0.147 −0.787 .432 0.075 0.137 0.547 .585

Island, exotic (EISL) −0.286 0.047 −6.114 <.001* −0.238 0.046 −5.137 <.001*

Abbreviation: AUC, area under the receiver operating characteristic curve.
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the transferability of SDMs. However, there may have been insuffi-
cient differences to detect an effect, as only 11.8 and 13.4% of sites 
showed negative MES values on average for GAMs and MaxEnt, 
respectively. Finally, SDMs performed substantially worse when at-
tempting to predict the distribution of species invading islands, as 
predicted. Species originating from islands, however, did not signifi-
cantly affect model transferability, but only comprised 13 out of 647 
species and so this result may reflect low power.

To further quantify and illustrate the contexts wherein SDMs 
may be transferable, we discretized the 1,867 species–location 
extrapolations, based on the significant predictors from the trans-
ferability model. We found that worse transferability occurred for 
exotic islands within Asia, and when high exotic environmental cov-
erage (greater than 42%) occurred in Asia or on islands, with a mean 
AUC ~ .6 (Supporting Information Table S7). Conversely, we found 
that species invading North America recently (after the year 1970) 

or with relatively few invaded sites (less than 20% environmental 
coverage) stood out as having stronger AUCs, with mean AUC ~ .8 
(Supporting Information Table S8).

4  |  DISCUSSION

While many studies have used SDMs to forecast the distributions of 
exotic species (e.g., Vicente et al., 2013), evidence for reliable trans-
ferability to new locations has been equivocal (Yates et al., 2018). 
Recent studies have also found differences in predictiveness be-
tween methodological approaches, with MaxEnt performing bet-
ter than regression-based models within the fitted range (Valavi 
et  al.,  2022). We also found that MaxEnt predicted better than 
GAMs in the range used for fitting; however, GAMs slightly outper-
formed MaxEnt when extrapolating to exotic ranges, demonstrating 

F I G U R E  3  Dot-whisker plot of the parameter estimates for the binary and continuous predictors included in the linear mixed model for 
generalized additive models (GAMs; black) and MaxEnt (orange), with taxonomic class and continent as categorical predictors. Whiskers 
represent the 95 percent confidence intervals of the parameter estimates
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the importance of validation using spatially distinct data (Valavi 
et al., 2022). Moreover, we found half of the projections to exotic 
ranges to be unreliable despite strong performance in the native 
range (based on a .7 AUC threshold; Morán-Ordóñez et  al.,  2017; 
Swets, 1988). While AUC within the fitting data did positively relate 
to spatial transferability, high native range model performance was 
not sufficiently able to confer predictive success alone. This find-
ing should inform our interpretations (and level of uncertainty) of 
invasion forecasts using environmental predictors. Notably, these 
were based on presence-only SDMs and mostly correlative cli-
matic predictors, and thus alternative SDMs, such as those using 

presence–absence or more mechanistic models, may provide supe-
rior transferability (but these possibilities need to be evaluated).

From a more optimistic perspective, half of the SDMs maintained 
some discriminatory ability (AUC ≥  .7), and this method remains 
the best analysis possible given that alternatives (e.g., presence–
absence data) are often unavailable. Further, although environmen-
tal similarity was not a significant predictor in the transferability 
model, this could be because successfully invaded ranges were en-
vironmentally similar to their corresponding native range, with few 
sites considered different on average (i.e., not enough variation to 
find a relationship). However, the environmental similarity between 

F I G U R E  4  Map of the mean discriminatory performance (area under the receiver operating characteristic curve; AUC) of the models 
extrapolated to invaded regions, averaged between generalized additive models (GAMs) and MaxEnt. Striped regions represent areas that 
were invaded by fewer than three species

TA B L E  3  Mean performance of the species distribution models divided between taxonomic groups, measured as area under the receiver 
operating characteristic curve (AUC), in both the native (fitting) range and the extrapolated (validation) range

Taxa

Native Exotic

n GAM MaxEnt n GAM MaxEnt

AUC SD AUC SD AUC SD AUC SD

Mammalia 12 .780 0.106 .783 0.109 26 .645 0.121 .655 0.108

Insecta 19 .781 0.071 .790 0.058 34 .692 0.122 .663 0.122

Aves 21 .753 0.076 .772 0.079 49 .663 0.131 .673 0.116

Plants 591 .815 0.073 .831 0.068 1,752 .701 0.127 .693 0.123

Liliopsida 161 .819 0.070 .835 0.064 462 .692 0.127 .689 0.120

Magnoliopsida 416 .812 0.074 .828 0.070 1,266 .703 0.126 .693 0.124

Pinopsida 5 .908 0.073 .917 0.065 9 .702 0.142 .709 0.145

Polypodiopsida 9 .832 0.031 .860 0.031 15 .784 0.141 .803 0.126

Reptilia 4 .772 0.098 .787 0.091 6 .768 0.143 .818 0.110

TOTAL 647 .811 0.075 .827 0.070 1,867 .699 0.127 .692 0.123

Abbreviation: GAM, generalized additive model.
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ranges would also suggest that invasions are predictable at the re-
gional level. Identifying which regions are at risk is also an import-
ant component of invasion biology (Ahmad et al., 2019). Regardless, 
much room exists for improving the transferability of SDMs (Yates 
et al., 2018).

A recent publication by Liu et al. (2020) also examined the spatial 
transferability of SDMs through meta-analysis, whereas we gener-
ated SDMs for this study. The authors’ approach provided a valuable 
assessment of transferability, given how researchers have histori-
cally constructed SDMs (wherein model construction and quality 
control could vary considerably), while ours attempted to system-
atically control for quality and bias. In their study, Liu et al. found 
vastly higher accuracy in the range used for fittting, equivalent to an 
AUC = .939 based on their metric, but poorer transferability, equiv-
alent to AUC = .664. In comparison, we found a less steep decline 
in performance and greater transferability, with a lower AUC in the 
native range (AUC ~ .82), but higher AUC in the exotic range (AUC 
~ .70). Increasing quality control should reduce noise and overfitting 
and increase transferability (partially explaining the greater decline 
in transferability observed by Liu et al., 2020). However, the per-
formance in the exotic range may differ more than these numbers 
suggest. Most SDMs historically do not control for bias (Yackulic 
et al., 2013) and thus, some of the signal in the exotic range in Liu 
et al. (2020) may reflect consistent detection bias between native 
and exotic ranges (e.g., due to distance to roads or human habitation; 
Yackulic et al., 2013), rather than the environmental drivers of inter-
est. Therefore, transferability would likely have been even lower in 
Liu et al. (2020) if studies had controlled for biases.

4.1  |  Predictors of transferability

Transferability differed between invaded continents, suggesting 
that SDMs may be more generally reliable in some areas than oth-
ers. Liu et al. (2020) observed higher transferability in the Southern 
Hemisphere, contrary to our expectations, given greater data avail-
ability (Yesson et al., 2007) and research focus (Pyšek et al., 2008) 
in the Global North. Conversely, we found that Asia and Africa 
had worse transferability, possibly due to poorer sampling, while 
North America, with its high sampling intensity, showed the strong-
est performance. Surprisingly, we found that Europe showed low 
transferability, despite its high sampling intensity. Potentially, this 
may be because Europe has been heavily developed for centuries 
(Hulme, 2007), and the strong signal of transformed landscapes may 
weaken transferability based on climatic variables. As an additional 
factor, these large geographic areas differ considerably in biodiver-
sity and species interactions (Willig et al., 2003). For instance, SDMs 
in practice rely on the realized niche, and higher species interactions 
in the tropics could reduce local predictions based on abiotic vari-
ables (Urban et al., 2016).

We found the strongest transferability for plants, and lower 
(but similar) levels of transferability for mammals, birds, and insects. 
Though we observed a higher average AUC for reptiles, these were 

represented by only four species and therefore this should be in-
terpreted with caution. One possible explanation is the mobility of 
species, which may influence the reliability of sightings records, as 
well as spread across areas within invaded areas (i.e., their dispersal 
ability; Elith & Leathwick, 2009; Urban et al., 2016). Contrary to this 
argument, Liu et al. (2020) observed higher transferability for terres-
trial endotherms using meta-analysis. Yet, comparisons between our 
studies may be difficult to interpret, given differences in controlling 
for detection bias.

Increasing geographic distances between ranges resulted in 
poorer transferability, despite most invaded ranges being environ-
mentally similar to the native range (based on the environmental 
traits measured). This suggests that other important factors varied 
over geographic distance, beyond those directly measured in our 
analysis (e.g., human demographics, Xu et al., 2019; community com-
position, Urban et al., 2016).

We found that SDMs often failed to predict the distribution of 
island invaders. Given that most species originated from mainlands, 
the overall poor transferability of SDMs to islands may be due to 
large ecological differences between ranges, for example through 
their differing community structure, and greater number of endemic 
species on mainlands (Vitousek, 1990). This poor discrimination on 
islands is particularly relevant for conservation, as island invasions 
are often of high concern due to their fragile recipient communities 
and risk to native biota (Lenzner et al., 2020; Simberloff, 1995).

Several of our findings differed from our a priori expectations, 
suggesting other processes were in play and requiring new hypoth-
eses. While exotic environmental coverage negatively influenced 
model transferability, as models failed to differentiate between back-
ground sites and presences (Brotons et al., 2004; Zhang et al., 2015), 
environmental breadth in the native range was positively related to 
transferability. As a potential explanation, the positive relationship 
between native environmental breadth and SDM transferability may 
be due to a censoring effect, wherein we only analysed successful 
establishments. Smaller niche breadths may result in better discrim-
ination in the native range in general, but most of these specialists 
may fail to establish in any exotic range (i.e., they would not exist 
within the study). Established species with narrow environmental 
breadths may then represent those restricted by other processes 
(e.g., biotic factors; Urban et al., 2016) that are released from these 
processes when invading a new region and may therefore occur out-
side of their realized niches and be poorly predicted. This post hoc 
hypothesis, however, requires further testing. For example, one pos-
sibility would be to examine successful and failed establishments in 
relation to their environmental breadth, using records of purposeful 
introductions to control for differential propagule pressures.

Also contrary to our initial hypotheses, we found a negative relation-
ship between SDM transferability and GDP in the native range (which 
affects amount of trade with destination countries and thus propagule 
pressure, Sardain et al., 2019). We had expected that as species have 
greater opportunity to encounter more environments (more introduc-
tion events or more time to spread), exposure should become less of a 
limiting factor, thereby allowing environmental determinants to become 
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more important in shaping species distributions (Leung et  al.,  2012; 
Runquist et  al.,  2019). Second, we found that more recent invaders 
were more predictable. This was unexpected as earlier invasions should 
result in greater opportunities for exposure and be closer to equilibrium 
(an assumption of SDMs; Václavík & Meentemeyer, 2011). As a poten-
tial explanation, species may first establish in the most suitable habi-
tats, resulting in good discrimination as these should offer the highest 
probabilities of survival. Species may begin to occupy less suitable sites 
with increased exposure, due to repeated introductions and processes 
such as competition, reducing overall transferability (Liu et al., 2020; 
McLoughlin et al., 2010). Finally, GAMs performed worse with higher 
number of native occurrences, contrary to our original expectation that 
more data may better inform model predictions. A previous study had 
found a positive relationship between transferability and the number 
of occurrences (Liu et al., 2020), more in line with our original hypoth-
esis. While we cannot offer a mechanism underlying this relationship 
(beyond potentially a Type I error), we felt it was important to report 
findings even when they do not match our expectations to minimize 
confirmation biases in the literature.

Both SDM approaches tested in this study largely yielded con-
cordant results, with similar levels of transferability and most predic-
tors of transferability showing the same direction and significance. 
As such, there was no clear preference for one approach versus the 
other. While there were two differences (number of native occur-
rences and year of first record) out of 14 predictors examined, we 
would not expect the outcomes to be entirely identical between two 
alternative statistical models. As we were generally interested in the 
potential factors influencing model predictiveness, we considered 
the predictor if either GAM or MaxEnt provided evidence that a 
given factor affected transferability, albeit with less certainty than if 
the predictor was significant in both transferability models.

While overall transferability was modest, we observed strong 
predictions for SDMs occurred under certain contexts. Using the 
significant predictors of the transferability model, we identified con-
crete instances where SDMs may be successful. For example, we 
found higher transferability with more recent or less widespread 
invaders within North America, which is important from a manage-
ment perspective as identifying the most likely sites of new inva-
sions is often of interest (Kaiser & Burnett, 2010).

4.2  |  Limitations and future directions

The SDMs in this study were generated using presence-only data, 
which is the most common approach due to the wide availability 
of occurrence records (Elith & Leathwick,  2009). Despite survey 
data representing a more rigorous sampling design, such data are 
less available for most species (Barbet-Massin et  al.,  2012). Thus, 
presence-only SDMs will likely remain an essential part of ecological 
modelling.

Although we found only low to moderate transferability, we ac-
knowledge that this study primarily focused on correlative climate-
based models, which may relate to species occurrences via other 

(unknown) variables. The correlations between measured and other 
unknown variables need not remain consistent in exotic ranges, com-
promising transferability. Potentially, a loss in transferability may also 
be due to a temporal mismatch between species records, which ranged 
between 1970 and 2020, and environmental measures, which ranged 
from 1970 to 2000 for WorldClim and 2000 to 2020 for NDVI. Such 
differences may result in the models failing to characterize the species’ 
actual relationship with its environment, resulting in poor predictive 
performance. More mechanistic processes of species distributions may 
confer better transferability (e.g., land use, ecosystem functional attri-
butes and biotic factors; Arenas-Castro et al., 2018; Regos et al., 2019; 
Urban et al., 2016, respectively). However, unsurprisingly, the major-
ity of ecological models have been based on such climatic predictors, 
given the challenges of applying experimental data to large geographic 
analyses (Werkowska et al., 2017) and the greater availability of high-
resolution global climate data (e.g., Fick & Hijmans, 2017).

Finally, while we examined as many species as possible with 
the available data, the majority of species available were plants. 
However, non-plant groups still were comprised of 56 species and 
115 exotic ranges within the dataset, and thus still represent an im-
portant component of the analysis, especially given the taxonomic 
differences in transferability detected.

4.3  |  Conclusion

We conducted a large-scale systematic assessment by constructing 
647 SDMs for individual species, to allow for the greatest compa-
rability and rigor. Half of the SDMs exhibited poor discriminatory 
performance in the exotic range. However, SDM performance was 
heterogeneous, wherein SDMs may be reliable under certain con-
texts (e.g., invasions in North America after 1970), and only mar-
ginally better than random in others (e.g., exotic islands in Asia). 
Thus, inferences based on SDM projections to new ranges should 
be treated with caution, but SDMs still hold promise under some 
circumstances. Further analyses would be beneficial to identify ad-
ditional conditions where SDMs may be reliable.
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