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There is an increasing awareness that human activities in 
one region are connected to broader, often global effects on 
conservation and sustainability1. Simultaneously, substan-

tial social changes are anticipated over the coming decades, with 
increasing population sizes and different potential socioeconomic 
trajectories2. Thus, to understand sustainability, we must map the 
ways in which different regions are interconnected globally3, and 
consider the interplay between these connections, anticipated 
socioeconomic changes and their environmental effects.

One of clearest ways in which regions are connected is via trans-
portation networks. In particular, the global shipping network 
(GSN) is the primary means by which materials and goods are 
moved worldwide, accounting for over 80% of world trade4. Thus, 
to understand changing global physical connectivity, changing  
shipping traffic is an obvious choice for analyses.

From a sustainability standpoint, the GSN is responsible for the 
introduction of non-indigenous species (NIS), which can have det-
rimental ecological and economic impacts5. For instance, ships may 
transport living organisms through ballast water, which is taken up 
to stabilize the vessel, and biofouling, whereby species attach on the 
hulls of ships. Together, these two pathways are believed to account 
for 60–90% of marine bioinvasions6. Likewise, terrestrial pests are 
moved as a by-product of shipping (for example, infestations of 
wood packing material7), where the characteristics at arrival ports 
could influence the pest spread rates across a continent8.

In recent years, data on global shipping movements have become 
available with vessel-tracking automatic identification systems 
technology, allowing for reconstruction of the GSN9 and, subse-
quently, forecasting of global invasions through the network10,11. 
Most of these forecasts focus on the effects of climate change on NIS 
spread10–12, and for good reason: global climate change is expected to 
alter the range and distribution of many species, such that the risk of 
invasion of certain areas linked through the GSN may also change13. 
However, as global climate projections are undertaken at the scale 
of multiple decades, one must consider that perhaps the GSN itself 
will also change. To date, however, no study has factored in potential 
changes to the GSN, either in shipping intensity or distribution.

To assume that the GSN will remain static over the coming 
decades goes against the historical trend. Indeed, between 1992 
and 2012, shipping traffic grew fourfold14. As an added complica-
tion, global shipping growth occurs non-uniformly across space. 
For instance, although both Western Europe and Japan experi-
enced dramatic increases in shipping traffic between 1960 and 1970  
followed by a period of stagnation, only Western Europe experi-
enced another boom in traffic two decades later, while Japan has 
continued to experience marginal growth to the present day15. 
Growth in maritime traffic also differs between ships: between 2000 
and 2007, the annual growth rate of the global fleet of liquefied  
natural gas tankers (in deadweight tonnes) was 11%, 5% for roll-on/
roll-off cargo ships and 2% for bulk carriers15.

Socioeconomic factors largely underlie the changes in the GSN4. 
As wealth and population increase, so too comes a growing need 
for goods and services that are not locally available. Imbalances 
between supply and demand create conditions for trade and 
interdependence between nations. The transport of goods traded 
between global commercial partners is the GSN’s raison d’être. 
These close links between economy and shipping underlie the 
25% drop in global shipping during the 1930s recession and 640% 
increase over the 25 years of post-World War II economic boom15. 
More recently, China’s share of global container throughput surged 
from 1.4–20.1% between 1990 and 2013, reflecting the country’s 
economy growing 830% in the same time period16. In view of this 
variability in trade and shipping patterns in recent decades—both in 
terms of magnitude and distribution—it is clear that the assumption 
of an unchanging GSN warrants greater scrutiny when venturing to 
forecast shipping-mediated invasion into the next century.

Moreover, given the importance of socioeconomic factors in 
driving change in global shipping, it is logical to investigate how well 
traditional socioeconomic indicators predict changes in shipping 
patterns, as well as what other factors should be considered towards 
this end. For instance, all other things being equal, trade between 
nations has been found to increase proportionally with the product 
of their gross domestic products (GDPs), and to be greater still if 
they share a common language (for example, refs. 17–19). One may 
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expect similar relationships to hold for shipping traffic, although 
to what extent remains an open question. Furthermore, given that 
different ship types carry different cargoes, we should expect the 
relationships between socioeconomic development and maritime 
traffic to vary by ship type. This is particularly important from the 
perspective of biological invasion, as different ships have different 
associated invasion risks. For instance, bulk cargo ships generally 
release more ballast water than roll-on/roll-off cargo ships, resulting 
in a greater likelihood of species introduction20.

Linking changes in shipping traffic to socioeconomic drivers 
also allows us to benefit from, and build on, extensive research on 
socioeconomic scenarios21,22. The shared socioeconomic pathways 
(SSPs) are among the most recent set of comprehensive forecasts 
of global development. Developed by the International Institute  
for Applied Systems Analysis (IIASA) as part of the International 
Panel on Climate Change’s (IPCC’s) Fifth Assessment Report, the 
SSPs present five possible global futures, matched with qualita-
tive narratives and corresponding quantitative pathways of socio-
economic variables, such as GDP and population2. In addition 
to forming the basis for the IPCC forecasts of global greenhouse  
gas emissions and mitigation recommendations, the SSPs have  
been used in forecasting studies in the domains of land use2 and 
agricultural production23, water consumption24, public health25 and 
vulnerability to extreme weather events26. To add global shipping, 
and concomitant biological invasions, to this list further advances 
the scenarios by adding to their dimensionality, thereby contribut-
ing to a higher-resolution image of the possible future.

In this manuscript, we provide: (1) a novel synthesis, inte-
grating data and research across disciplines, including maritime  
traffic, socioeconomic indicators, quantitative projections of 
global development and climate change, and probability models of 
ship-mediated invasion; (2) global projections of shipping traffic,  
demonstrating that forecasting is possible, and providing novel 
forecasts to 2050; and (3) as an outcome of 1 and 2, forecasting of 
global marine biological invasions, projecting both the magnitude 
and changing hot spots of invasion risk. These will form quantita-
tive, predictive building blocks, with which new, more advanced, 

sustainability models can be constructed, incorporating a central 
mechanism of global, physical connectivity.

Results
In the Methods, we describe our approach to predicting global mari
time traffic and its impact on biological invasions. As an overview,  
we integrated global data on >50 million ship voyages across  
9 years, and historical variables and socioeconomic predictors, 
to build our model, hereafter referred to as the residual-adjusted 
unconstrained gravity (RAUG) model. We then integrated the 
RAUG model with global socioeconomic development scenarios, 
IPCC global climate change projections and shipping-mediated 
marine invasion models to forecast traffic and marine invasions 
across socio-ecoregions (SERs; see Methods).

Model validation and predictor variables. The RAUG model  
predicted 90% of variation in shipping traffic in 2014 based on  
training data from 2006–2009 when aggregating across ship types, 
as well as predicting the twofold increase in shipping observed 
between fitting and validation years (actual increase: 2.03×; 
RAUG prediction: 1.81×). When separating by ship types, the 
RAUG model predicted between 59 and 93% of variation in traffic  
(Table 1). RAUG consistently outperformed three alternative 
models for all ship types (Supplementary Table 1). Interestingly, 
inclusion of autocorrelation terms (alternative model IV) yielded 
virtually identical fits, indicating that residual adjustment accounts 
for autocorrelation. We thus proceeded with the simpler version of 
the RAUG model.

Across all ship types, GDP, distance, common language and 
regional trade agreements were found to be important predic-
tors (Table 1). In all cases, source GDP, destination GDP, common  
language and regional trade agreements had positive relationships 
with vessel traffic, while distance had a negative relationship. Other 
variables were only predictive for some ship types. Where these 
variables were significant, shipping traffic had a positive relation-
ship with common colonial history and an ambivalent relationship 
with source population, destination population and contiguity.

Table 1 | Parameter values and predictive accuracy for the proposed model

Bulk carrier Chemical tanker Container ship Crude oil/oil 
products tanker

General cargo 
ship

LNG tanker Ro-ro cargo 
ship

All ships

Intercept 3.63 (0.0319) 2.31 (0.0316) 2.89 (0.0451) 2.23 (0.0316) 2.71 (0.0295) 1.48 (0.0297) 2.04 (0.0340) 4.67 (0.0345)

GDPI 1.40 (0.0610) 1.19 (0.0613) 1.07 (0.0875) 0.929 (0.0618) 1.26 (0.0570) 0.622 (0.0573) 0.991 (0.0348) 1.53 (0.0353)

GDPJ 1.16 (0.0610) 1.03 (0.0323) 1.27 (0.0461) 0.889 (0.0618) 1.13 (0.0570) 0.685 (0.0574) 0.992 (0.0348) 1.40 (0.0663)

PopI −0.123 
(0.0615)

−0.185 (0.0617) 0.204 
(0.0880)

0.181 (0.0624) −0.209 
(0.0574)

0.0205 
(0.0578)

NA NA

PopJ 0.167 (0.0615) NA NA 0.253 (0.0624) −0.128 
(0.0574)

0.148 (0.0578) NA 0.140 
(0.0666)

Distance −0.385 
(0.0347)

−0.956 
(0.0390)

−0.704 
(0.0520)

−0.870 
(0.0372)

−1.15 (0.0370) −0.687 
(0.0372)

−0.829 
(0.0386)

−0.671 
(0.0425)

CB NA −0.151 (0.0588) NA NA 0.150 (0.0345) −0.271 
(0.0347)

NA 0.156 
(0.0400)

CL 0.277 
(0.0336)

0.302 (0.0330) 0.632 
(0.0471)

0.0327 
(0.0334)

0.326 (0.0312) 0.249 (0.0313) 0.525 (0.0352) 0.455 
(0.0360)

CCH NA 0.190 (0.0566) 0.115 (0.0502) 0.213 (0.0361) NA NA 0.0944 
(0.0372)

NA

RTA 0.393 
(0.0344)

0.407 (0.0349) 0.440 
(0.0486)

0.163 (0.0342) 0.367 (0.0320) 0.453 (0.0321) 0.295 (0.0366) 0.454 
(0.0371)

R2
MSE 0.678 0.835 0.875 0.741 0.931 0.595 0.752 0.897

Parameter values are based on vessel traffic data and rescaled driver data for 2006–2014. Predictive accuracy is measured as R2
MSE applied to 2014 validation data, using fits on 2006–2009 data. Standard 

errors are listed in brackets. The subscripts I and J denote source and destination SERs, respectively. CB, common border; CCH, common colonial history; CL, common official language; LNG, liquefied 
natural gas; NA, non-significant variable at α = 0.05 and n = 210 (15 × 14); pop, population; ro-ro, roll-on/roll-off; RTA, regional trade agreement.
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Of all these predictors, GDP consistently had the strongest effect 
on shipping traffic. In some cases, GDP’s positive effect on traffic 
was tempered by a negative relationship with population, suggesting 
that GDP per capita could be the driving factor. In all cases, both 
source and destination GDPs affected shipping, sometimes with a 
combined effect greater than unity. Distance was the next strongest 
determinant of shipping traffic, followed by socio-political factors.

Forecasting to 2050. We predict that the number of vessel move-
ments between SERs will be between 240 and 1,209% greater in 
2050 than in 2014 (Fig. 1). In comparison, we found that inter-
SER traffic increased by 258% between 2006 and 2014. However, 
this growth will not be uniform (Fig. 2 and Supplementary  
Fig. 2). Increases in shipping traffic will be highest along connec-
tions with large, fast-growing economies, notably Northeast Asia. 
Connections with large, developed economies (for example, around 
the Mediterranean) or fast-growing, but less-developed economies 
(African and southern South American SERs) will experience more 
moderate increases. Meanwhile, smaller, slow-growing economies, 
such as those in the Eastern Indo-Pacific, will remain relatively low 
traffic through to 2050.

Although shipping traffic growth is projected to differ between 
scenarios, all five SSPs project increases in shipping traffic from 
2014 levels for the vast majority of areas (Fig. 2 and Supplementary 
Fig. 2). This growth will be most pronounced for environmentally 
sustainable (SSP1) or unsustainable (SSP5) scenarios, due to global 
trajectories in both increased magnitudes of GDP and decreased 
cross-national inequality. In contrast, trajectories that result in 
greater global inequality—evidenced most strongly in SSP3—will 
see lower rates of shipping growth, and therefore lower invasion 
risk, through the mid-century.

Furthermore, we predict a dramatic, global increase in invasion 
risk by 2050, regardless of the development scenario. Our analysis 
suggests that this increase will primarily be due to shipping traffic 
(Fig. 3). In comparison, environmental change will have a marginal 
effect on invasion risk, and may in fact reduce it in most areas. This 
is true whether or not future environmental distances are calcu-
lated with respect to a source port’s current or future environmental 
conditions (Supplementary Fig. 3). When only factoring in envi-
ronmental change, the mean expected number of annual invasions 
at the SER level is anticipated to drop from 1.18 (σ = 1.12) in 2014 
to 1.14 (σ = 1.08) in 2050, with 14 of 15 SERs experiencing slight 

decreases in invasions. When also factoring in change in shipping 
traffic, the mean expected number of annual invasions is expected 
to increase to between 3.91 (σ = 3.89) and 23.40 (σ = 21.16)—a 3- to 
20-fold increase.

The major sources of invasions will thus be areas generating 
high amounts of shipping traffic, with Northeast Asia being the 
most important invasion source for most SERs by a considerable 
margin (Fig. 4 and Supplementary Fig. 4). Nonetheless, environ-
mental differences will continue to play a decisive filtering role, 
dictating the relative importance of certain SERs as sources of inva-
sion. For instance, despite forecasted traffic to the Mediterranean 
from Northern Europe being six to nine times greater than from 
the Central America region, the expected number of invasions  
will be eight to ten times less. However, in comparison with the 
anticipated growth in shipping traffic, change in environmental 
conditions over the coming decades is not expected to result in  
significant changes in the relative importance of areas as sources of 
invasion (Supplementary Fig. 4).

Discussion
Our results suggest that the GSN in 2050 will differ substan-
tially from current patterns, for all global development scenarios. 
Previous invasion forecasts have done well incorporating change 
with respect to some important abiotic factors11,12,20; however, they 
have assumed that shipping dynamics will remain static over the 
coming decades, despite historical evidence suggesting this is highly 
unlikely14. Our results show that this assumption could lead to a 
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drastic underestimation of global invasion risk, and suggest that 
quantitative estimates of shipping growth are critical to forecast-
ing marine biological invasions. Using 2014 (our last year of data) 
as our baseline, consideration of only environmental change yields 
roughly the same overall invasion risk, whereas inclusion of GSN 
growth yields a 3- to 20-fold increase.

Forecasting efforts in the invasion literature have primarily 
focused on climate-driven environmental change. While environ-
ment plays an undeniable role in biological invasion, more precisely, 
it is the difference in environmental conditions between source and 
destination (that is, environmental distance) that matters for spe-
cies establishment27. It is not clear that environmental distances will 
systematically decrease with climate change; in contrast, we expect 
shipping traffic to generally and greatly increase by 2050. However, 
we note two caveats. First, we analysed temperature and salin-
ity—the most common environmental variables for marine studies  
and those used in previous forecasting efforts10,12,28. Other factors 
could conceivably have a more systematic effect increasing invasion 
success (for example, habitat disturbance). Unfortunately, data on 
such variables are less available. Second, the relative importance 
of propagule pressure (which is related to traffic) versus environ-
mental distance probably differs across systems. For instance, for  
aquarium fish introductions into the USA, changes in environment 
had a greater effect than changes in propagule pressure29, which 
arguably reflects the tropical origins of popular aquarium fish,  
and the anticipated climate-driven change towards more similar 
environments in the USA. Nonetheless, in the global context, where 
NIS can come from worldwide sources and potentially invade 
worldwide destinations, propagule pressure appears to be the domi-
nant, consistent force, given anticipated socioeconomic changes.

Given the importance of shipping, it is encouraging that  
socioeconomic predictors capture much of the variation in global 
shipping. We found that the most important determinant was  
GDP. However, while previous studies have used GDP as a linear 
predictor of propagule pressure30,31, we found a nonlinear relation, 
with parameters mostly greater than 1 (that is, shipping increases 
at a rate greater than GDP). Moreover, it was not just the GDP of 
the destination, but the multiplicative effect between source and 

destination GDPs that mattered. The implication of this is that:  
(1) using a given region’s GDP as a proportional surrogate of  
invasion pressure will probably underestimate the true change; 
and (2) the relationship between GDP and traffic (propagule pres-
sure) cannot be understood in isolation, but needs to be considered 
within the larger context of all trading partners of a given nation.

Shipping was not solely determined by GDP, however. Population 
exhibited both positive and negative relationships with maritime 
traffic. Furthermore, these relationships were generally relatively 
weak in nature. These findings may seem counterintuitive as  
larger populations tend to consume more materials32. However, two 
factors may be counteracting this effect, explaining the variable’s 
ambivalence. First, a larger market size may incentivize domes-
tic production (‘import substitution’)33, resulting in greater self- 
sufficiency and decreased reliance on international trade34. Second, 
in the context of positive relationships with GDP, a negative 
population parameter yields a metric of GDP per capita (GDPa× 
Population-b). Conceivably, GDP per capita, which is related to  
standard of living, could be a relevant measure of economic  
development affecting trade.

Beyond GDP and population size, other significant factors 
included subtler social determinants that might facilitate trade 
(for example, common language, common colonial history and 
trade agreements) and other factors that might hinder it, such 
as distance. Meanwhile, contiguity exhibited both positive and 
negative relationships with shipping. This surprising result might  
also be explained by the interaction of opposing forces: on the one 
hand, contiguous regions might engage in more trade because  
they are physically closer to one another, while on the other hand, 
contiguous areas have opportunities for overland transport, which 
would reduce reliance on shipping as a transport medium. Sure 
enough, when significant, contiguity—much like population— had 
a relatively weak effect. Together, these socioeconomic predictors 
helped explain 90% of variation in shipping, substantially outper-
forming comparative ‘naïve’ models (Supplementary Table 1).

Given the predictability of the GSN based on socioeconomic 
predictors, we could investigate the implications of alternative 
global socioeconomic scenarios on biological invasions. First, our 
analyses suggested that ‘sustainability’ and ‘fossil-fuelled develop-
ment’ scenarios both had the highest increase in invasions. This 
was because both increasing economic development and decreas-
ing social inequality result in increased shipping traffic. Pursuing a  
trajectory of sustainability and equality is obviously of common 
interest; however, it is important to have a complete accounting 
of the costs and benefits of policies, to identify unintended conse-
quences, and to potentially identify solutions.

A further consequence of these socioeconomic processes is that 
areas experiencing pronounced economic growth will simultane-
ously experience surges in invasion risk. This is reflected in the 
growth in the expected number of invasions in some already devel-
oped areas, but also in middle-income areas whose economies 
are anticipated to continue to develop over the coming decades. 
However, unlike the already developed group, the middle-income 
group is rarely the focus of invasion studies35, which, our results  
suggest, appears to be a substantive oversight. In particular, 
Northeast Asia, which is anticipated to be the primary invasion 
hotspot—both as a source and sink—over the coming decades, 
warrants greater attention in the invasion literature. Interestingly, 
North America has been the traditional source of marine inva-
sions to Northern Europe (40–50% of invasion risk) compared 
with Northeast Asia (15–20%)20. In contrast, our forecasts sug-
gest that Northeast Asia could account for 80% of invasion risk 
to Northern Europe by 2050. These differences are logically con-
sistent. The results of Seebens et al.20 were based on 2007–2008 
shipping. Between 2008 and 2014, North American GDP barely 
changed, whereas Northeast Asia’s increased by 250%. Likewise, 
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invasion risk to Northern Europe from Northeast Asia (26%) over-
took North America (22%) by 2014. In 2050, North America GDP 
is projected to increase by 2×, while Northeast Asia is projected 
to increase by 21×, explaining the dramatic shift in invasion risk. 
In comparison, although the world’s least developed regions will 
continue to face numerous sustainability challenges over the com-
ing decades36,37, we expect these regions to continue to experience 
comparatively fewer invasions (although this does not speak to 
their potential impact).

This study focused primarily on economic drivers of change; 
however, the GSN has also historically been influenced by politi-
cal, technological and geophysical factors (see Supplementary 
Information). We excluded the first two factors from the model as 
these are inherently unpredictable on the time scale of this study 
(but see Supplementary Information), and we purposefully omitted 
the last category as only two potential changes are on the horizon. 
The first is the construction of the Nicaragua Interoceanic Canal, 
which is unlikely to significantly impact global shipping patterns38, 
if it is to be completed at all39. The second is the opening of Arctic 
passages due to the melting of polar ice caps, which has garnered 
much attention in recent years40–42. However, despite studies show-
ing that Arctic avenues may open up by the mid-century43,44, sea-
ice irregularity will pose significant problems for shipping, which is 
an industry dominated by logistical constraints and strict delivery 
schedules. The substantial increase in navigation risks and asso-
ciated insurance premiums means that Arctic maritime traffic is 

likely to remain largely destinational rather than navigational until 
the mid- to late-century45,46.

As with all models, there are assumptions and potential improve-
ments. For one, the regionalization of shipping traffic means intra-
regional movements are excluded from consideration. Focusing on 
broad geographical scales is most appropriate for analyses of global 
biological invasions, emphasizing meaningful regional biotic com-
position47, limiting secondary dispersal effects, and minimizing 
other forms of human travel (that is, overland) and transshipments, 
which can decouple macroeconomics from shipping (for example, 
entry through hub-ports, then subsequent secondary transport 
to other countries48). For researchers interested in intraregional 
dynamics (for example, at the country level), we recommend our 
regional model, which is highly predictive, followed by a second 
intraregional submodel. Notably, other factors (for example, trans-
shipments or neighbourhood effects), which are dampened by the 
aggregation of traffic into large multi-country SERs, may be more 
important at smaller scales, potentially requiring other model for-
mulations (for example, explicitly mechanistic trade models49, spa-
tial autocorrelative models50 and network models51). Second, certain 
spatiotemporal effects may also affect invasion risks, such as dif-
ferences in regional species richness52, and the seasonality of trans-
port cycles and reproduction53. Third, other model formulations are 
possible. We constructed our model using Seebens et al.20 as our 
invasion model structure; however, alternative models of invasion 
probability exist (for example, ref. 54), have different properties  

Southern
South America

Western
Africa

Northeast
Asia

Russia

Eastern
Indo-Pacific Mediterranean

North
America

Northern
Europe

Australia/
New Zealand

Black
Sea

Central America/
Caribbean/northern

South America
Eastern
Africa

0

2

4

0

2

4

0

2

4

0

2

4

Australia/New Zealand

Black Sea

Central America/Caribbean/
northern South America

Eastern Africa

Eastern Indo-Pacific

Mediterranean

North America

Northeast Asia

Northern Europe

Russia

Southeast Asia

Southern Africa

Southern Asia

Southern South America

Western Africa

Southeast
Asia

Southern
Africa

Southern
Asia

Fig. 4 | Breakdown of invasion risk by source SER for each destination SER in 2050 under ‘status-quo’ shipping projections (SSP2: ‘middle-of-the-
road’). Source SERs are defined by colour, while destination SERs are labelled above each pie chart. A pie chart’s radius represents the log-scaled expected 
annual number of invasions (see equation (11)). See Supplementary Fig. 5 for upper and lower 95% prediction intervals.

Nature Sustainability | VOL 2 | APRIL 2019 | 274–282 | www.nature.com/natsustain278

http://www.nature.com/natsustain


ArticlesNATure SusTAInAbIlITy

and might be worth developing. Likewise, our understanding of 
climate change and socioeconomic scenarios continues to evolve, 
and could change the projections from this paper. Fourth, our index 
of risk was measured as the sum of invasion probabilities. This is 
arguably the simplest formulation, and while relaxing this assump-
tion would be interesting, it would require knowledge of species 
compositions across ports, which are currently unknown in a global 
context. For all of these reasons, our forecasts serve principally  
to highlight differential invasion risk, between both regions and  
scenarios, rather than to provide a precise estimation of the number  
of future invasions. Finally, our forecast does not consider changes 
to vessel hygiene protocols, which may lead to lower risks of inva-
sion than those forecast in this study. We omitted this factor as 
biosecurity standards have hitherto been highly variable across 
locations, and their biological efficacy, in many cases, is uncertain55. 
While these additional factors offer avenues for future research,  
the current effort arguably establishes an estimate of how the GSN 
will evolve, and a new baseline for global biological invasions over 
the coming decades.

Importantly, these baseline projections for invasions should not 
be viewed as inalterable; environmental policies, as is their purpose, 
could moderate them. Our work here intersects with, and is largely 
commendatory of, current policy initiatives, such as the interna-
tional Ballast Water Management Convention. The Convention, 
which entered into force in 2017, represents the latest global effort 
to control ballast-mediated bioinvasions; for instance, using bal-
last exchange—a measure that has been effective at reducing inva-
sion rates in the freshwater Laurentian Great Lakes56. While it is too  
soon to assess the Convention’s effectiveness globally, this study high-
lights the necessity for concerted measures targeting marine bioin-
vasions, which otherwise are at risk of increasing to unprecedented 
proportions. The Convention targets the most relevant driver, given 
that increased global shipping (that is, propagule pressure), and not 
environmental change (that is, environmental suitability), was found 
to be the key factor driving the increase in invasion risk. Furthermore, 
if efficacy in reducing the per-ship probability of introduction could 
be estimated, this study could be a key piece in quantifying the 
averted damages and benefit of the Convention.

Here, we have posited that the GSN will not remain static, that 
changes are predictable by socioeconomic factors, and that these 
may result in dramatic increases in biological invasions, far beyond 
those that might be caused by environmental changes. As human 
societies and their environment continue to transform at accelerat-
ing rates57, understanding the potential implications of such changes 
on sustainability, and the benefits of environmental policy, becomes 
an increasingly important task. Although applied to invasive spe-
cies, our methods could be applied directly to other sustainability 
issues, such as forecasting transport-related emissions or energy 
demand. Beyond environmental sciences and invasion biology, this 
work may also contribute to disciplines such as trade economics, 
by emphasizing potential collateral environmental consequences 
associated with economic growth (that is, invasive species), provid-
ing a highly predictive regional model, which could be followed by 
intraregional country submodels, and introducing residual adjust-
ments as a simple approach to incorporate variation due to unmea-
sured factors affecting trade and transport (for example, spatial 
autocorrelation). Regardless of the application, forecasting the GSN 
provides a substantive layer in understanding the global transport 
systems, movement of materials across the world, and modelling of 
sustainability science.

Methods
Data. We acquired data on ship movements from IHS Sea-web. Sea-web provides 
data on movements (port-of-call, arrival and departure dates, and hours in port) 
and ship attributes (for example, size and type). For fitting of the RAUG model, 
we collected data on all movements occurring between 2006 and 2014 inclusive, 

consisting of voyages of 81,305 ships separated into 7 ship types (accounting for 
95% of shipping traffic), between 3,872 ports.

We obtained GDP and population data from the World Bank, and data on 
inter-country distance, regional trade agreements, common language, common 
border and common colonial history through the Centre d'Études Prospectives et 
d'Informations Internationales research centre58,59. We obtained forecasted GDP 
and population values from the IIASA’s SSP projections database.

As different ships release different amounts of ballast, we collected data on 
ballast water releases from the National Ballast Information Clearinghouse (NBIC) 
Database60. The NBIC collects data on ballast water discharge for all ships calling at 
US ports and is the most comprehensive database of its sort available globally. We 
collected data on all ballast releases recorded by the NBIC between 1 January 2006 
and 31 December 2014.

We obtained current and forecasted environmental conditions for all ports 
from the AquaMaps Environmental Dataset61. AquaMaps lists temperature and 
salinity values at a scale of 0.5° latitude × 0.5° longitude cells worldwide, providing 
forecasted values based on IPCC Scenario A2. We matched each port with the 
nearest AquaMaps environmental cell.

Before RAUG model parameterization, we applied a number of filtering steps 
on the data. First, we interpreted all port calls lasting less than 2 h (the minimum 
recorded time window) as a passage through a port’s detection zone and discarded 
these. We also discarded voyages that required a mean speed exceeding 65 km h−1 
(twice the average speed for merchant ships; http://worldoceanreview.com/en/
wor-1/transport/global-shipping/2/). Finally, for the purposes of our model, we 
disregarded ship movements to Panama and Egypt as the data did not allow us to 
distinguish between canal passages and true port visits. Instead, the previous and 
subsequent ports of call were taken as the source and destination, respectively.

We then categorized the world’s marine-coastal countries into 15 different 
SERs (Supplementary Table 2). We define SERs as regions displaying marine 
biogeographic and ecological similarity, roughly matching the ‘realm’ 
bioregionalization by Spalding et al.47, but also incorporating socioeconomic 
regionalization. Considering socioeconomic, geographic and ecological groupings 
allowed for meaningful regional biotic composition, minimization of other forms 
of human travel (for example, overland) and minimization of secondary dispersal, 
and also allowed linkages to macroeconomic variables, which were the predictors 
in the RAUG model.

In addition to excluding non-coastal countries, we also omitted countries for 
which data were missing in any of the four aforementioned datasets. This filtering 
step resulted in the exclusion of 40 coastal countries, most of which were small 
island states. The remaining 140 countries accounted for 99.3% of all port calls.

Building and testing the predictive model. The model we used is an adaptation 
of the gravity model of trade. Inspired by Newton’s law of universal gravitation, 
the gravity model of trade’s original formulation states that bilateral trade 
flows between two countries are proportional to the product of the size of their 
economies and inversely proportional to the distance between them62. Since 
then, this model has been adapted to include more variables that may affect trade 
resistance, such as common colonial ties or contiguity18,19,49, and used to explore 
other types of bilateral flows, such as migration63 and commuting behaviour64. 
Given the close link between trade and shipping, the application of gravity models 
to predict shipping traffic is logical.

We used the following gravity model formulation:

β β β β
β β

β β β β ε

= + + +
+ +

+ + + + +

Xlog[ ] log[GDP ] log[GDP ] log[pop ]
log[pop ] log[dist ]

CL CB CCH RTA
(1)

IJst s s It s Jt s It

s Jt s IJt

s IJt s IJt s IJt s IJt

0 1 2 3

4 5

6 7 8 9

where XIJst designates ship movements of ship type s from source SER I to 
destination SER J in year t, pop is population, dist is the great-circle distance 
between SERs (calculation below), and CL, CB, CCH and RTA are values from  
0–1 denoting the proportion of pairs between each of I and J’s member countries 
that share a common official language, common border, common colonial 
history and regional trade agreement, respectively. The residual term ε reflects 
unmeasured factors, such as differential trade infrastructure65, historical 
preferences66, neighbourhood effects67, trade costs and multilateral resistance49. 
Where these factors reflect systematic, repeatable differences between inter-
regional pairs, explicitly modelling the residuals could offer a simple means of 
incorporating diverse, unmeasured processes (as discussed below).

GDP and pop are the sum of the GDP and population, respectively, of all 
countries within a SER. Because we were interested in SER-level invasions, dist was 
calculated based on the mean latitude and longitude of all countries within an SER, 
weighted by each country’s population; for example:

∑= ×
∑∈ ∈

Latitude Latitude
Population

Population
(2)I

i I
i

i

i I i

where i is a country in SER I, and populationi is the average population of 
country i over the course of the RAUG model’s fitting years. With each SER’s 
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latitude and longitude values, we calculated inter-SER distances as great-circle 
distances on an ellipsoid between geographical point locations68. We utilized this 
metric—rather than true ship distance—as the RAUG model uses national-level 
indicators, and it is not obvious how to include true ship distance (a port-level 
measure). Since we do not anticipate shipping distances to change over the 
forecasting period (see Supplementary Information), we expect the residual 
adjustment (see below) to largely correct for any error due to the use of great-
circle distance. Common official language, common border, common colonial 
history and regional trade agreement are typically binary values for each country 
pair. To convert these to SER-level variables, we calculated the mean of binary 
values for each combination of countries present in each pair of SERs. We fit the 
model separately for each ship type, using forward selection to determine which 
variables should be retained.

Our model accounts for variation in each of the predictor variables; however, 
myriad other factors intrinsic to each bilateral connection could also impact 
movement flows. To account for this, we incorporated inter-regional residual 
effects (that is, the ‘residual-adjustment’ component of the RAUG model). If 
deviations from the mean expectation reflect systematic, repeatable differences 
between regional pairs, the residual structure would contain predictive information 
and should be preserved (for example, if traffic between Northeast Asia and 
Southeast Asia were higher than expected based on equation (1) in 2009, we might 
expect it to remain higher in 2014 or 2050). The effect of this is similar to using 
dummy variables for each region, but has important consequences for forecasting. 
First, region-specific dummy variables would capture much of the variation due to 
macroeconomic variables, which could yield a good fit, but would result in poorer 
predictions if these macroeconomic variables have a real effect and change in the 
future. Second, using dummy variables requires additional parameters to be fit for 
each region, whereas residuals do not. In notation, the final predicted traffic values 
with residual adjustment ( ̂′X IJst) were calculated as follows:

̂′ = ̂ × ̂X
X

X
X (3)IJst

IJs

IJs
IJst

0

0

Here, XIJs0 refers to actual mean historical traffic values, and ̂XIJs denotes predicted 
mean values without residual adjustment for historical ( ̂XIJs0) and forecasted ( ̂XIJst)  
traffic (see Supplementary Table 3 for residual adjustments by SER). Equivalently, 
one can conceptualize the effect of the macroeconomic predictors used in the 
gravity model as a scaling factor for the proportional change in shipping, given all 
of the background factors determining shipping between regions. Given the gravity 
model’s log-linear formulation, this back-transformed offset was multiplicative.

We performed model validation by fitting model parameters to four years of 
data (2006–2009) and predicting ship movements in 2014. Prediction strength 
was evaluated using the squared deviation from the 1:1 line of predicted values ( ̂y) 
versus observed values (y)—that is, the mean squared error (MSE) as a proportion 
of the variation in observed values, R2

MSE:

∑
∑

ŷ
= −

−

− ̄
R

y

y y
1

( )

( )
(4)MSE

2
2

2

This measure will always be less than or equal to the conventional coefficient of 
determination R2, which generates residuals from the best-fitting regression line. 
As this was applied to temporally distinct validation data, the unexplained variation 
(1 − R2

MSE) represents prediction error, which is an outcome of all of the underlying 
forms of uncertainty (for example, epistemic uncertainty (model and parameter) 
and stochasticity (for example, spatiotemporal fluctuations)).

We compared the RAUG model against four alternative models. Alternative 
model I was a ‘naïve history’ model that assumed that shipping traffic would 
remain unchanged from mean values between 2006 and 2009. The naïve history 
model is identical to basing predictions only on residuals; thus, improvements 
from using RAUG are due to the effects of macroeconomic predictors. Alternative 
model II was a historical model with a fitted scalar to adjust for growth. Here, 
we used mean traffic between 2006 and 2008 as the historical baseline and traffic 
data for 2009 to calculate an annual growth rate. We then applied this annual 
rate of growth each year to 2014. Alternative model III resembled our proposed 
model, but did not use residual adjustment. Instead, we added dummy variables to 
equation (1) for each source and destination SER. This formulation of the gravity 
model is widely used17,69 and attempts to capture multilateral resistance49. The use 
of dummy variables is a more traditional approach than our RAUG model, but, 
as explained above, can capture much of the variation due to macroeconomic 
predictors. Alternative model IV considered spatial autocorrelation. Although 
SERs represented broad geographical scales, autocorrelation could still occur. We 
tested whether the residual adjustment accounts for autocorrelation by modifying 
equation (1) to include GDP and the population of the nearest neighbouring SER 
as additional predictors.

Forecasting to 2050. To forecast ship movements to 2050, we refit the RAUG 
model to all nine years of historical data (2006–2014; equations (1)–(3)), using 
GDP and population projections under each of the five SSPs. Common official 

language, common border, common colonial history and regional trade agreement 
were kept constant at the 2014 levels.

The IIASA’s SSPs—developed as part of the IPCC’s Fifth Assessment Report—
present five different narratives of future socioeconomic developments2. SSP1 
(‘sustainability’) foresees a global emphasis shift from economic growth to human 
well-being, and lower resource and energy intensity, leading to lower inter- and 
intra-country inequality. SSP2 (‘middle-of-the-road’) projects a continuation  
of the historical trend: uneven global development, moderate population growth,  
and slow progress in mitigating environmental degradation and reducing 
resource and energy intensity. SSP3 (‘regional rivalry’) forecasts a rise in global 
protectionism, resulting in slow economic development and current levels of 
inequality or worse, where population growth is low in developed nations and 
high in developing ones. SSP4 (‘inequality’) is characterized by high intra- and 
international stratification of power, wealth and opportunity, split between 
a capital-intensive, well-connected society and a fragmented collection of 
lower-income societies. SSP5 (‘fossil-fuelled development’) proposes a world 
that embraces resource- and energy-intensive practices coupled with effective 
management of social and ecological systems, resulting in rapid global economic 
growth and increasingly integrated global markets.

Associated with each of the five SSPs are decadal GDP and population forecasts 
to 2100, covering 181 countries. Each SSP presents a single population projection 
and three different GDP projections, one of which is designated the representative 
‘marker’ for that SSP. Here, we used the population and marker GDP projections 
for each SSP.

The alternative SSPs yielded the main source of uncertainty in our forecasts. 
These were combined with uncertainty estimates for the RAUG model to obtain 
upper and lower bounds of our projections. For RAUG uncertainty, we first used 
the predict function setting interval = ‘prediction’ with the lm object in R, to obtain 
upper and lower 95% prediction intervals for the gravity model (PIgm) (equation 
(1)), passing each bound through the remainder of the RAUG procedure. 
Uncertainty could also occur in the residual adjustment. The residuals included 
context-specific factors determining trade between region pairs, but would 
also contain interannual variability. The prediction interval was thus calculated 
comparing observed and predicted traffic in the fitting years:







= × × +. −

.

s t
n

PI 1 1 (5)nra 0 05(2), 1

0 5

Where PIra is the 95% prediction interval, s is the standard deviation between 
observation and expected values ( − ̂′X XIJst IJst), calculated across fitted years, 
t is the critical value from the t distribution, and n is the number of fitted years 
used in estimating the residual adjustment (equation (3)). To obtain the overall 
upper bound of our forecasts, we took each SSP and passed the socioeconomic 
projections as predictors into upper prediction intervals of the RAUG model  
(PIgm and PIra), and then took the highest traffic projection. We repeated this with 
the lower bounds.

Probability of invasion. Next, RAUG-SSP projections of global shipping were 
integrated into a shipping-mediated marine biological invasion model, using the 
methodology outlined by Seebens et al.20. The model decomposes the probability of 
a species invading a certain port due to a given vessel movement into independent 
probabilities of a species being alien to the destination port, the species being 
introduced by the vessel, and that species successfully establishing. For every inter-
port movement, we calculated the probability of that movement leading to species 
invasion from the origin port to the destination port.

As the GSN dataset that we derived was not identical to that of Seebens et al., 
we recalibrated invasion model parameters to match their published probabilities 
of port-level invasion risk20. We used the same years as those used to fit their 
model, and adjusted the parameters in our establishment model to minimize 
deviation between our model’s output and the published probabilities. The 
resulting parameter values (defined below) were: α = 0.0000928, σT = 14.02 °C, 
σS = 23.88 ppt, β = 14.72, γ = 1,020.18 km, λ = 45.74 m−3 and μ = 0.023 d−1, and a 
correlation coefficient of r = 0.85 fit to their probabilities of establishment. Thus, 
our models generally produced the same patterns for 2007–2008, which were the 
fitting years used by Seebens et al.20.

Following Seebens et al., the likelihood that a native species in donor port i is 
non-native in recipient port j is a function of biogeographical dissimilarity:











γ= +

β−

P
d

(alien) 1 (6)
ij

where dij is the inter-port distance, and γ and β are constants. The likelihood that a 
species is introduced from source i to destination j on ship route r is:

= − λ μ− − ΔP e e(introduction) (1 ) (7)B tr r

In this formulation, the probability of introduction increases with the amount of 
released ballast water Br that is taken up at source port i and released at destination 
port j, and decreases with the mortality rate of the species μ and travel time Δtr. λ is 
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a constant. For each set of connections, Δtr was set as the number of days between 
port calls.

Ballast water released for a given ship route r (that is, from a source port i to a 
destination port j) was calculated as follows:











= −
δ

B zW
zW
V

1 (8)r r
r

r

r

where Wr represents the amount of ballast a given ship releases, Vr denotes the 
volume of a ship’s ballast tank, δr is the number of intermediate stopover routes on 
route r, and z is the fraction of zero releases a ship makes. We estimated ship-type-
specific values of z using US ballast water release data from the NBIC. We estimated 
values of Wr by applying regressions on non-zero releases from the same dataset, 
using ship size (deadweight tonnes) and ship type as predictors (Supplementary 
Table 4), and calculated Vr as one-quarter of a ship’s carrying capacity20.

The probability of establishment follows a Gaussian function of standardized 
differences of water temperature and salinity between donor and recipient ports20:
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where σ

ΔTij

T  and σ

ΔSij

S  represent standardized differences in temperature and salinity, 
respectively, between the source port i and destination port j, α is the basic 
probability of establishment, and σT and σS are scaling parameters for temperature 
and salinity, respectively.

We combined the above equations to calculate invasion probabilities between 
any two ports:

∏= − −P P P P(invasion) 1 [1 (alien) (introduction) (establishment) ] (10)ij
r

ij r ij
ij

where rij denotes each vessel movement from port i to port j. We then aggregated 
invasion probabilities across all ports i contained in SER I to port j in SER J as an 
index of invasion risk between SERs:

∑ ∑=
∈ ∈

E P(invasion) (invasion) (11)IJ
i I j J

ij

E (invasion) IJ is analogous to the expected number of invasions, with the 
simplifying assumption that invasions from different ports are independent 
(necessary given the absence of species-specific information).

To forecast inter-port invasion risk to 2050, we recalculated invasion 
probabilities using forecasted environmental values, then applied an exponential 
coefficient based on the RAUG-SSP-projected increase in traffic for the 
corresponding SER pair:

= ′̂ ∕n X X (12)IJ IJ IJ2050 2050 2014

where again ′̂X  denotes the predicted traffic with residual adjustment, and X refers 
to actual traffic. These calculations yielded the following forecasted values:

∑ ∑= − −
∈ ∈

E P(invasion) [1 [1 (invasion) ] ] (13)IJ
i I j J

ij
n

2050 2014
IJ2050

where again port i is located in SER I, port j is located in SER J, and nIJ2050 represents 
the ratio of traffic between SERs I and J in 2050 compared with 2014, and was  
used to scale traffic with their ports. Given that P(invasion) incorporates  
higher-order connections, our forecasts will as well. This assumes that higher-order 
connections increase proportionally with primary traffic predicted from the  
RAUG model. Using the output of these models, we present how the expected 
number of invasions may vary under the different socioeconomic scenarios, and 
compare the effects of climate-driven environmental change and prospective 
growth in shipping traffic on global invasion probabilities.

Code availability
Code underlying the results will be made available upon request.

Data availability
Historical GDP and population data were obtained from the World Bank Databank 
(http://databank.worldbank.org/), and forecasted values are accessible through 
the IIASA SSP database (https://tntcat.iiasa.ac.at/SspDb/). Data on inter-country 
distance, trade agreements, common language, common border and common 
colonial history are obtainable through the CEPII research centre’s GeoDist and 
Gravity datasets (http://www.cepii.fr/CEPII/en/bdd_modele/bdd_modele.asp). 
Data on historical ballast releases can be accessed through the NBIC Database 
(https://invasions.si.edu/nbic/search.html). Current and forecasted environmental 
variables used in this study are available from the AquaMaps Environmental 

Dataset (https://www.aquamaps.org/main/envt_data.php). Data on ship 
movements and attributes were purchased from IHS Sea-web, are used under 
license and cannot be publicly shared by the authors. However, these data can be 
purchased from IHS (https://maritime.ihs.com).
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