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Biological invasions threaten global biodiversity, human well-being and 
economies. Many regional and taxonomic syntheses of monetary costs 
have been produced recently but with important knowledge gaps owing 
to uneven geographic and taxonomic research intensity. Here we combine 
species distribution models, macroeconomic data and the InvaCost 
database to produce the highest resolution spatio-temporal cost estimates 
currently available to bridge these gaps. From a subset of 162 invasive 
species with ‘highly reliable’ documented costs at the national level, our 
interpolation focuses on countries that have not reported any costs despite 
the known presence of invasive species. This analysis demonstrates a 
substantial underestimation, with global costs potentially estimated to be 
518% higher for these species than previously recorded. This discrepancy 
was uneven geographically and taxonomically, respectively peaking in Asia 
and for plants. Our results showed that damage costs were primarily driven 
by gross domestic product, human population size, agricultural area and 
environmental suitability, whereas management expenditure correlated 
with gross domestic product and agriculture areas. We also found a lag time 
for damage costs of 46 years, but management spending was not delayed. 
The methodological predictive approach of this study provides a more 
complete view of the economic dimensions of biological invasions and 
narrows the global disparity in invasion cost reporting.

Biological invasions pose a global threat to biodiversity, ecosystem ser-
vices and economies1. They are recognized as one of the five main bio-
diversity threats, contributing to 60% of recorded global extinctions2,3. 
Alongside the massive environmental and health impacts, the esti-
mated monetary cost of biological invasions exceeds those for most 
natural hazards4, totaling a multi-trillion-dollar cost globally5,6. These 
monetary impacts are escalating worldwide, in line with the rising rates 
of introduction7,8.

The InvaCost database has begun to address the global knowledge 
gap in costs of biological invasions by compiling and synthesizing data 
on their monetary burden9. However, current estimates are mostly 
based on published studies and thus represent only a subset of mon-
etary costs, often reflecting geographic and taxonomic biases in under-
lying research6,10,11. Most of the documented costs are concentrated in 
Europe and North America9, thereby misrepresenting the economic 
burden of invasive species present in other regions, including most 

Received: 26 March 2024

Accepted: 26 March 2025

Published online: 26 May 2025

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: isma-sa@hotmail.com; brian.leung2@mcgill.ca

http://www.nature.com/natecolevol
https://doi.org/10.1038/s41559-025-02697-5
http://orcid.org/0000-0002-7288-6336
http://orcid.org/0000-0002-3997-828X
http://orcid.org/0000-0002-3952-9732
http://orcid.org/0000-0002-9722-6692
http://orcid.org/0000-0002-9382-6973
http://orcid.org/0000-0001-5545-4032
http://orcid.org/0000-0003-2012-1160
http://orcid.org/0000-0003-1896-3860
http://orcid.org/0000-0003-2220-5579
http://orcid.org/0000-0003-2770-254X
http://orcid.org/0000-0001-8118-8612
http://orcid.org/0000-0001-9595-3354
http://orcid.org/0000-0002-7686-4302
http://orcid.org/0000-0003-2154-4341
http://orcid.org/0000-0001-7605-4548
http://orcid.org/0000-0002-8323-9628
http://crossmark.crossref.org/dialog/?doi=10.1038/s41559-025-02697-5&domain=pdf
mailto:isma-sa@hotmail.com
mailto:brian.leung2@mcgill.ca


Nature Ecology & Evolution | Volume 9 | June 2025 | 1021–1030 1022

Article https://doi.org/10.1038/s41559-025-02697-5

expenditure might start off lower and increase more gradually over 
time or decrease as it becomes more efficient5.

Our study aims to estimate the monetary cost of invasive species 
based on a method combining SDMs with macro-economic indica-
tors and spatio-temporal predictors. To achieve this, we (1) analyse 
the differential patterns of damage and management expenditure; 
(2) assess the interpolated monetary costs and their potential to pro-
vide a more accurate representation of costs in under-documented 
regions, thereby shedding light on geographic biases; and (3) provide a 
fine-scale map of global monetary costs. By relating range size to costs 
within a country, we obtain unprecedented granularity in cost estima-
tion per unit area. This is critical because per unit costs underpin the 
efficient allocation of resources, making it possible to assess returns 
on investment and prioritize mitigation strategies19.

Results
Based on 162 invasive species in 172 countries, the assessment of the 
missing costs showed a 17-fold discrepancy, that is, the difference 
between costs reported in InvaCost and the total estimated costs. It rep-
resents a discrepancy of global cost of these species from US$126.81 bil-
lion (reported in InvaCost) to US$784.24 billion (approximately +518%; 
range, US$228–5,025 billion) over the period 1960–2022, resulting in 
an annual average of US$12.45 billion (Supplementary Table 1). The ensem
ble economic model for damage costs (Supplementary Tables 2 and 3)  
predicted a discrepancy in damage cost of 529%, corresponding to an 
increase from US$117.73 to US$740.91 billion (range, US$213–4,539 
billion). For management expenditure, the ensemble economic model 
(Supplementary Tables 2 and 3) predicted a discrepancy of +378%, equal 
to an increase from US$9.07 to US$43.38 billion (range, US$14–486 
billion) (Supplementary Table 1).

For damage costs, the mixed model provided the best model (fit-
ted R2 = 0.52), with GDP, agricultural area and environmental suitability 
showing significant positive relationships (see Supplementary Table 2 
for details, including both fitted and validation dataset results). The 
best ratio-scalar model additionally found population size, time since 
invasion and lag phases as significant predictors (fitted R2 = 0.34; 

of the global south12,13. This skew leads to an underestimation of costs 
in less-studied regions that has remained unresolved.

Considering the extensive data deficiencies, the growing eco-
nomic implications of biological invasions and the limited budgets 
allocated to conservation, new approaches are urgently needed to 
assess their monetary burden more accurately. Species distribution 
models (SDMs) are used to predict the potential range of species by 
quantifying their environmental suitability14. These models work by 
correlating the known locations of species with environmental factors 
in these locations. By combining the species occurrences predicted 
by SDMs with the economic costs associated with these species, it is 
possible to perform spatial interpolations that include regions where 
economic costs have not yet been reported14,15. Despite strong links 
between species range size and economic impacts of invasions16, the 
range estimates from SDMs and the invasion cost data reported by 
InvaCost have yet to be fully synthesized. Considering the dynamic 
nature of invasive species costs over space and time, SDMs could thus 
be used to improve global monetary estimates.

We integrate SDMs into invasion cost estimates by linking the 
predicted suitable habitat area for invasive species in each country to 
potential economic impacts, while integrating further invasional and 
macro-economic characteristics (Fig. 1). Specifically, cost predictions 
could be made in combination with data on the time since invasion 
which in turn informs how economic costs might evolve temporally, 
including potential time lags between the invasion and the appearance 
of measurable impacts17. Macro-economic indicators, such as gross 
domestic product (GDP), human population or agriculture area size 
could also be relevant predictors of the monetary impact of invasive 
species because they are directly tied to macro-economic factors (for 
example, labour, capital)18. Moreover, different types of cost, such as 
damage costs and management expenditure, might exhibit divergent 
spatio-temporal patterns. These costs are compounded by increased 
economic activities and the potential for more extensive damage to 
goods, production and infrastructure in densely populated or agri-
culturally intensive areas. Damage costs might rise rapidly with longer 
invasion duration and expanding suitability area, whereas management 
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Fig. 1 | Schematic representation of the methodology used to interpolate 
monetary costs. The scheme is split into the following: extraction of monetary 
cost data (step 1), SDMs (step 2) and cost model selection (step 3). Each step is 

not solely dependent on the listed databases; some variables are derived from 
previous steps. Each colour corresponds to the factor input in each step. GLMM, 
general linear mixed model.
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Supplementary Table 2). By contrast, for management expenditures, 
the ratio-scalar model was the strongest approach (fitted R2 = 0.26), 
with GDP and agricultural areas providing the main predictors (Sup-
plementary Table 2). For the mixed model, only GDP was significant for 
management expenditures (fitted R2 = 0.23; Supplementary Table 2). 
Importantly, similar patterns were observed for both fitted and vali-
dation datasets, supporting the robustness of our models. Ensemble 
models of ratio-scalar and the mixed model were used for final cost 
projections.

Geographic cost distributions
In addition to completing costs for undocumented species in some 
countries, our cost interpolations also revealed costs for 78 countries 
for which no data were previously available. Based on our interpola-
tion, at the continental level, Europe had the highest potential impacts 
from biological invasions, reaching US$213.45 billion (27.22% of global 
costs), followed by North America (US$201.26 billion, 25.66%), Asia 
(US$20.23 billion, 8.21%), Africa (US$116.92 billion, 14.91%), South 
America (US$67.52 billion, 8.61%) and Oceania (US$28.11 billion, 3.58%). 
Asia reported a disproportionate discrepancy in costs correspond-
ing to +2,679%, followed by Europe (+1,939%), Africa (+1,768%), South 
America (+809%), Oceania (+654%) and lastly, North America (+116%) 
(Supplementary Fig. 1 and Supplementary Table 4). When focusing 
on damage costs, Europe again had the highest estimated economic 
burden, at US$199.18 billion, whereas the percentage discrepancy for 
Asia was again the most substantial at +2,790%, rising from US$5.21 to 
$150.78 billion (Supplementary Fig. 1 and Supplementary Table 4). For 
management expenditures, Europe had the highest estimates costs 
at $US14.27 billion and Africa the steepest percentage rise, reaching 
+1,618%, from US$0.29 billion to US$4.99 billion (Supplementary Fig. 1 
and Supplementary Table 4).

At the country level, the median cost discrepancy was +3,243% 
(3,100% and 4,098% for damage and management, respectively). 
However, there was a major discordance among countries, with some 

showing remarkably higher increments were India (+973,077,392%),  
followed by Sri Lanka (+11,406,804%) and the Netherlands 
(+11,367,006%). The estimated costs were particularly acute for coun-
tries in Africa and Asia, where most had not previously recorded any 
economic costs (see Fig. 2). In terms of absolute estimated costs from 
biological invasions, China had the highest estimates costs, at US$131 
billion. When examining the discrepancy in damage costs, Sri Lanka 
reported the most significant rise at +11,406,904%, although the United 
States had the highest absolute damage costs, amounting to US$46.44 
billion. As for management expenditure related to these invasions, 
India had the highest percentage discrepancy at +973,077,492%. Yet, 
the United States again topped the list in terms of total expenditure 
with US$10.47 billion (Supplementary Table 5).

Taxonomic cost interpolations
The estimated monetary burden of biological invasions varied across 
taxonomic groups and types of cost. For damage costs, mammals 
were the group with the highest estimates cost (US$247.75 billion; dis-
crepancy of +229%), followed by plants (US$231.62 billion; +1,013%), 
arthopods (US$167.25 billion; +811%), birds (US$76.47 billion; +2,715%), 
mollusks (US$16.23 billion; +8,810%) and fish (US$1.56 billion; +347%) 
(Fig. 3a). For management expenditures, plants were the costliest group 
with the highest estimates cost (US$22.28 billion, +2,033 %), followed 
by arthropods (US$9.00 billion; +203%), mammals (US$6.73 billion; 
+224%) and birds (US$3.79 billion; +28%), while mollusks (+5,866%), 
fish (+1,658%), amphibians (+22,702%) and reptiles (+14,914%) had 
negligible costs totaling US$1.41 billion (Fig. 3b). Fish had the greatest 
average estimated damage costs (US$0.78 billion) and birds for man-
agement expenditures (US$0.49 billion) (Fig. 3c,d). We also identified 
variations within each taxonomic group influenced by both the number 
of cost estimates available and the individual magnitudes of these 
estimates, with plants, fish and arthropods exhibiting above-average 
damage costs, whereas birds exceeded the global average in manage-
ment expenditures (Fig. 3c,d).

Damage Management

a b

c d

e f

Economic cost in
US$ billion

0 to 1

1 to 5

5 to 15

15 to 30

30 to 75

Missing

Percentage of
increase (%)

No initial costs

1–1,000

1,000–10,000

10,000–100,000

100,000–1,000,000

1,000,000–10,000,000

Missing

Fig. 2 | Global economic cost associated with invasive species at the country 
level. a,b, Costs are split into data from the InvaCost database for damage costs 
(a) and management expenditure (b). c,d, Total economic costs (that is, data 
from the InvaCost plus estimated costs) for damage costs (c) and management 

expenditure (d). e,f, Percentage increase (that is, discrepancy) of the economic 
cost from InvaCost to the total economic costs for damage costs (e) and 
management expenditure (f).
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Monetary costs per unit area (km2)
Our high-resolution assessment of the monetary costs of biological 
invasions revealed a complex pattern of spatial heterogeneity in costs 
estimated across the globe. We found large disparities at sub-national 
level, with apparent ‘cost hot spots’ (that is, locations where the costs 
are highest). Notably, we identified that these cost hot spots are pre-
dominantly located in densely populated urban areas, particularly in 
coastal zones. Regionally, Europe, the east coast of China and the east 
and west coasts of the USA were highly affected.

Among the species causing damage costs, Heracleum mantegaz-
zianum (giant hogweed) was estimated to be the most economically 
burdensome, with an average cost of US$630,928 km2 (Fig. 4). This 
was followed by Carduus platypus (plumeless thistle; US$532,510 
km2), Capra hircus (domestic goat; US$503,387 km2), Sus scrofa (wild 
boar; US$456,536 km2) and Coptotermes formosanus (Formosan sub-
terranean termite; US$296,369 km2). For management expenditure, 
Phelipanche aegyptiaca (Egyptian broomrape) was the costliest spe-
cies with an average cost US$1,335,975 km2, followed by Cryptotermes 
brevis (West Indian drywood termite, US$433,828 km2), Reynoutria 
japonica ( Japanese knotweed, US$72,403 km2), Aedes aegypti (yellow 
fever mosquito; US$44,937 km2), and Anolis carolinensis (Green Anole, 
US$31,410 km2).

Area-based cost estimates revealed unprecedented mar-
ginal costs in Asian and North American countries, amounting to  
US$25.71 billion km2 and US$10.48 billion km2 respectively, followed 
by Oceania (US$4.64 billion km2), Africa (US$4.01 billion km2), Asia 
(US$2.74 billion km2) and South America (US$0.17 billion km2) (Sup-
plementary Fig. 2). Saint Kitts Nevis had the highest estimates cost 
per unit area, amounting to approximately US$790,712 km2 fol-
lowed by Liechtenstein and Micronesia, both exceeding costs of 
US$700,000 km2. Lastly, Andorra with a cost of US$641,838 km2 and 
Malta (US$543,072 km2) complete the top-five costliest countries 
per km2 (Fig. 4).

Discussion
Integrating SDMs with cost prediction models based on socio-economic 
factors enabled us to draw up a more complete picture of the monetary 
costs of invasive species, marking a notable advancement in quantify-
ing their impacts. We revealed a considerable discrepancy of +518% 
from US$126.81 billion to US$784.24 billion in estimated costs at the 
global scale (focusing on the subset of 162 species). Our approach there-
fore offers insight into the magnitude of missing costs, particularly in 
less-documented regions, such as Africa and Asia, alongside a granular 
assessment of the monetary costs of invasive species by country and 
square kilometre. These results place the monetary cost of biologi-
cal invasions on a similar scale to the global costs of extreme weather 
attributable to climate change20 and surpass previous comparative 
estimates for natural hazards4.

We included moderating factors in our models to account for 
differences in socioeconomic contexts based on the data available. 
Damage costs were driven mainly by GDP, human population size, 
agriculture area and environmentally suitable area (adjusted by time 
since invasion) common in both models (that is, ratio-scalar and mixed 
models). Larger human populations result in higher damage costs 
through more economic activities and greater invasion risks21, impact-
ing goods, production and infrastructure. Agriculture—the sector 
most vulnerable to invasions22—faces reduced yields and compro-
mised livestock health, elevating economic burdens23,24. Nevertheless, 
invasive species impacts are not confined to agriculture sectors and 
extend to others, such as public health and forestry. For instance, cats 
Felis catus are one of the costliest invasive species, affecting many 
sectors, including the environment, authorities and stakeholders, 
and agriculture25. The extent of suitable area is an indicator of invasion 
susceptibility affecting both damage and management costs. Lastly, 
regions with high GDP indicate more resources and financial capacity 
to invest in invasive species management but may also face greater 
establishment rates and potential for spread, making management 

Fig. 3 | Monetary cost of invasive species by taxonomic order and type of 
cost. a,b, Stacked bar plot based on the type of cost according to InvaCost for 
damage (a) and management (b). c,d, Average economic costs per species across 
taxonomic groups for damage (c) and management (d). Each dot represents the 

average cost for a given species, whereas the larger dot refers to the taxonomic 
average. Two species (Pontederia crassipes and T. absoluta) were excluded to 
enhance visualization clarity.
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more difficult and costly. Nevertheless, management and damage 
costs often occur simultaneously, as management efforts typically 
respond to or coincide with damages. While our model accounts 
for the variation in damage and management levels associated with 
socioeconomic contexts, the complex interactions between damage 
and management effectiveness remain unexplored and are challeng-
ing to test on a global scale.

We identified a time lag of ~46 years between species introduction 
and the peak of damage costs, suggesting that the monetary cost may 
not be immediate (that is, the cost debt)26 but increase over time, as 
presumably the invasive species becomes more abundant or occupies 
more surface area. This indicates that pre-emptive measures to mitigate 
the costs of invasive species should be implemented as soon as possible 
to limit the economic burden of invasive species in the future. Manage-
ment expenditure was, conversely, not characterized by a lag phase. 
This suggests that measures are often implemented soon after (for 
example, rapid response) or even before (for example, prevention) the 
impacts of invasive species. The potential early application of manage-
ment actions is a positive sign and consistent with recent theoretical 
analyses showing the importance of swift action27.

Our research addressed the bias presented in InvaCost database 
towards high-income nations by estimating invasion costs in countries 
previously undocumented, which is a common bias across all fields 
of biodiversity science, as for example, global meta-analyses often 
overlook a substantial proportion of the globe5,11,28,29. Moreover, the 
observed distribution of species occurrences is also biased, with most 
data in the Global Biodiversity Information Facility (GBIF) occurring 
in North America and Europe and less than 7% of the surface sampled 
even at 5 km2 (ref. 30). By projecting species occurrences more broadly, 
we include a greater geographic scope in our analysis and enhance the 
representativeness and applicability of our findings across diverse eco-
nomic contexts. We showed that several countries—mainly those with 
lower GDPs or little research into the cost of invasive species—had in fact 
substantial monetary costs, in some cases exceeding their annual GDP 
(for example, Dominica). Collectively, the estimated economic costs of 
invasive species exceed 3% of the global GDP. The initial geographical 
bias was further exacerbated when the two categories of costs were dis-
tinguished, with a greater bias towards management expenditure sug-
gesting lower investment in invasion mitigation in developing regions31. 
This disparity could stem from both limited resources and a recording 
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bias in the InvaCost database, which may overlook reports in languages 
predominant in Africa and Asia12. In addition, the geographic origin of 
costly invasions, primarily from Asia to Europe and the USA, contrasts 
with the minimal reported costs flowing to Africa and Asia, highlighting 
a need for broader, more inclusive data collection and analysis efforts32.

Monetary costs varied also in magnitude across taxonomic groups 
and within types of cost. Based on the reported costs in InvaCost, 
plants were respectively ranked second and fourth in damage and 
management spending. After accounting for interpolated costs, plants 
reported a substantial increase (1,062%), becoming the second most 
economically impactful group, confirming the underestimation bias 
that has been previously highlighted for this group5,33. Although they 
represented a sizable fraction in InvaCost, our results suggest that 
plant invasions were even more widespread in nature compared to 
other taxonomic groups, relative to their frequency in InvaCost34–36. 
Nonetheless, arthropods, mammals and birds also reported consid-
erable total costs (Fig. 3), while other groups, such as molluscs, fish, 
reptiles and amphibians generally had relatively low economic costs 
(Fig. 3). However, this may be due to their lower observability in terms of 
damage costs (that is, particularly to human infrastructure)37, research 
biases towards high-profile and more charismatic species38 or dispari-
ties resulting from the filtering process used in the study.

Quantifying the monetary cost of invasive species per spatial unit 
allows for a better impact assessment, aiding policymakers and con-
servationists in prioritizing management efforts. Our analysis revealed 
that a small fraction of locations (that is, hot spots)—often with high 
human density or key industries—are associated with most of the costs, 
as well as coastal regions—vulnerable due to trade and tourism37. The 
highest costs per km2 were predominantly in small countries which 
might be explained by their relatively high population density and/or 
dependence on the agricultural sector.

Our results indicate that H. mantegazzianum, C. platypus, C. hircus, 
S. scrofa, C. formosanus were the costliest species in terms of dam-
age costs, while P. aegyptiaca, C. brevis, R. japonica, A. aegypti, and 
A. carolinensis required the highest management expenditure per 
square kilometre. The reasons for their important impact vary among 
species, such as prominent traits (for example, rapid reproduction or 
high adaptability) that allow them to outcompete native species and 
disrupt ecosystems but also the economic sectors they affect, such as 
agriculture or public health that represent substantial portions of the 
global economy22. Management strategies for these species focus on 
control and eradication of populations, which can be costly due to the 
necessity for ongoing, intensive efforts39.

While our approach provides a more complete estimate of the 
monetary costs of invasive species and addresses many geographi-
cal gaps in existing literature, it is not without limitations. Our study 
included only species for which sufficient data were available for model 
calibration (distribution and economic cost data), limiting our sample to 
162 species out of 954 (17%) in the InvaCost database, thus likely under-
representing true costs. Economic estimates are subject to potential 
measurement errors, as cost data inherently vary in accuracy and com-
pleteness; however, by focusing on most reliable costs from InvaCost, we 
tried to minimize these uncertainties, although they may still influence 
the overall cost assessments presented. For instance, interpolated costs 
for certain countries appear disproportionately large, surpassing their 
entire GDP. These high estimates may arise from inherent limitations in 
the modelling process. Notably, such cases often involve small econo-
mies, such as Kiribati (GDP2020 ≈ US$0.22 billion), where low GDP values 
make such discrepancies more likely. As with any statistical model, both 
overestimations and underestimations are inevitable. While most values 
align well with predicted relationships, some deviations are expected, 
warranting caution when interpreting individual cases.

In addition, our approach spans several interconnected modelling 
steps, each of which necessarily comes with their own source of uncer-
tainty and limitations (for example, transferability of SDMs40). While 

we included a temporal dimension, the lack of complete data on spe-
cies’ first occurrences limited its effectiveness. While we acknowledge 
that species distribution predictions may vary due to the exclusion of 
ecological and socio-economic factors30, they provide the best projec-
tions available, and our model framework allows for the integration 
of additional data where possible. Although we tried to account for 
the socio-economic context of each estimated cost, we acknowledge 
that estimates from developed countries may not translate fully to 
less developed nations, where such data are often lacking. Finally, 
improved investment and management policies, such as transitioning 
to alternative crops that are less susceptible to damage, might affect 
economic cost estimates.

Therefore, the conclusions of this study must necessarily be based 
on currently available data (and its limitations), in particular, interpola-
tion based on different socio-economic and agricultural contexts when 
considering the varying cost effectiveness of management strategies 
between developed and developing nations. Despite limitations in our 
assumptions, our analysis reveals that adjusted costs are likely around 
518 times higher than those recorded in InvaCost. Our findings not 
only bolster the robustness of these results but also lay the founda-
tion for future research by refining analyses with, for example, map-
ping crop-specific pest impacts, extending models to include sectors 
such as fisheries and forestry as predictors or other potential relevant 
predictors such as transportation volume or split management costs 
by private agents or public sector. These advances pave the way for 
better assessment of the costs of these species in space and time and 
provide information on their marginal costs, enabling cost-effective 
management to be put in place worldwide.

Methods
Approach
Using the InvaCost database, we filtered country-level costs for a set of 
162 invasive species (out of 954 species in InvaCost) with highly reliable 
economic cost data at the national level, while separately considering 
damage and management costs (Supplementary Fig. 3). For each spe-
cies, we used ensemble SDMs (generalized additive models (GAMs) and 
maximum entropies (maxents)) to determine the amount of suitable 
area in each invaded country and incorporated two temporal predictors 
by considering the time since invasion and lag phases in the detection 
of the impacts that can modulate economic costs. Finally, we modeled 
costs against a set of macro-economic factors (that is, GDP, population 
size and agriculture area18) and, using the best ensemble economic 
model (averaging ratio-scalar and mixed model), we interpolated the 
missing costs in the countries where these species have been reported 
but no monetary costs have been recorded (Supplementary Fig. 3). 
Translocation of species that are native to other areas within the same 
country (e.g., the signal crayfish Pacifastacus leniusculus in the United 
States), were not considered in this analyses. The following sections 
describe the main steps of this methodology in detail.

Monetary costs
We first identified species whose costs were recorded in InvaCost, a 
‘living’ database of the monetary cost of invasive species worldwide 
reported in over 22 languages, to interpolate the monetary cost of 
invasive species on a global scale9,12,41. Each cost entry is standardized 
in annual US$ (2017 value) and has 65 descriptors, including the type of 
the invaded ecosystem and the taxonomy of the species. We excluded 
from the InvaCost database (1) less reliable and potential costs (the 
former referring to costs lacking documented, repeatable and trace-
able methods, typically from grey/non-peer-reviewed sources, the 
latter to costs expected and/or predicted over time within or beyond 
their actual distribution area), (2) costs at a lower scale than the coun-
try level and (3) costs for which data were insufficient or entries were 
unspecified (that is, with respect to spatial dimension, habitat type or 
nature of cost) (see Supplementary Information, Material 1 for more 

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 9 | June 2025 | 1021–1030 1027

Article https://doi.org/10.1038/s41559-025-02697-5

details). This filtering process resulted in the retention of 162 species 
(70 plants, 37 arthropods, 29 mammals, 10 birds, 5 molluscs, 4 reptiles, 
4 fish and 3 amphibians; Supplementary Table 6). The total cost for 
each estimate and species was divided by the corresponding duration 
of the cost entry, determined by the time elapsed between the ‘Prob-
able_starting_year_adjusted’ and the ‘Probable_ending_year_adjusted’ 
columns using the expandYearlyCosts function, to standardize cost 
estimates as annual costs42.

SDMs
We fitted SDMs using occurrences retrieved from the GBIF (gbif.org43) 
database for each of the 162 species (Supplementary Table 6) alongside 
a combination of bioclimatic, anthropogenic and human-mediated 
spread variables (Supplementary Fig. 3 and Supplementary Table 7). 
These were compared against 10,000 background points, generated 
for each taxonomic group (plants, arthropods, reptiles, amphibians, 
mammals, birds, molluscs and fish). To minimize sampling bias in 
presence-only data, we used the ‘target-group background’ approach44, 
basing the pseudo-absences on randomly sampling GBIF records for 
each taxonomic group. This reduces observation and spatial biases 
because pseudo-absences would be chosen using the same observa-
tion processes44,45.

For environmental variables, we downloaded 19 bioclimatic 
variables at global scale and at 5 × 5 arc min resolution (0.0833°) 
from WorldClim, which describe means, extremes and seasonality 
in temperature and precipitation from 1970–2000 (ref. 46) (Supple-
mentary Table 7). We complemented these with anthropogenic and 
environmental variables demonstrated to provide high predictive 
power for determining the presence of invasive species. Environ-
mental variables included elevation, slope, rugosity and potential 
evapotranspiration47,48 (Supplementary Table 7), while also including 
density of roads extracted from the Global Roads Open Access Data 
Set, version 149, which was used as a proxy for ease of human-mediated 
spread50. We standardized the predictors into grid cells to match the 
resolution of the WorldClim dataset (that is, 5 × 5 arc min). We mini-
mized the collinearity among predictors by calculating the variance 
inflation factor of all variables using the vifstep function of the usdm 
R package (version 2.1.7)51 and removing variables using a threshold 
value of 10 (Supplementary Table 7).

We used two versatile algorithms that can handle non-linear rela-
tionships to predict the potential suitable distribution for each invasive 
species: GAMs using the mgcv R package (version 1.8)52 and maxent 
using the maxnet R package53. While our approach to SDMs focused 
on the fundamental principles of the methodology, we meticulously 
adhered to the established standards54 (ODMAP (Overview, Data, 
Model, Assessment and Prediction) protocol; Supplementary Note 
1), thereby ensuring the replicability of our analysis and the transpar-
ency, robustness and reliability of our results. For GAMs, we limited 
the number of knots (that is, smooth terms) to 5 and used the selec-
tion function and cross-validation option to prevent overfitting of the 
model to our data. Furthermore, we examined the concurvity (that is, 
the correlation of the smooth functions of the predictors) for each 
variable and removed variables with high concurvity (>0.8) using the 
concurvity function from the mgcv R package to reduce multicollinear-
ity52. For maxents, we used ‘transformed features’—modified versions 
of the original predictors, for example, linear, quadratic—to enhance 
the model’s predictive capabilities. To mitigate the risk of possible 
overfitting, we limited the model complexity to linear, quadratic and 
product features55 while using the default settings in the maxnet pack-
age53 for all other parameters with the regularization applied40. Lastly, 
we created a weighted ensemble SDM that integrates both algorithms, 
weighting by the area under the curve of each modelling approach. 
Predictions from the ensemble models were then used to estimate the 
suitable area, which was calculated as the sum of the probabilities for 
a given species in a country.

To evaluate the performance of the models, we used a fivefold 
cross-validation and three metrics for evaluating predictive models: 
the area under the curve, the true skill statistic and the Boyce index 
(Supplementary Information, Materials 2 and 3).

Suitable area per country
We would expect that countries are not uniformly environmentally 
suitable for each species. Furthermore, as invasions tend to spread, 
we would expect that costs might also not be constant over time. We 
tested these predictions by modelling a temporal suitability and cost 
impact model. This model accounts for variations in environmental 
suitability and the associated economic costs over time within each 
country. It uses a logistic growth function to encapsulate the changing 
suitability of an area for a species (denoted as Sa), parameterized by 
both a constant (b0) and a time-varying coefficient (b1). This allows us to 
capture a possible initial phase of delay with costs initially minimal and 
gradually increasing as the species becomes established and spreads.

Sa =
∑G

i=j=1 Si, j
1 + e−(b0+b1t′)

; t′ = {0 if t ≤ b2; t − b2 if t ≥ b2} (1)

where Si,j = summed suitability area of a country scores across G grid cells 
i,j and t = time (years) since invasion. In addition, we modeled a potential 
lag phase (b2). This was done by fitting an additional temporal threshold 
(t′), where if t is lower than b2, t′ was set to 0, such that cost would be at the 
minimal level (set by b0). Our model does not incorporate economic dis-
counting of future costs. Instead, all costs are weighted equally over time, 
with temporal variations in cost strictly governed by the logistic func-
tion in equation (1). While SDMs come with several limitations, our use 
of SDMs for interpolation helps mitigate these challenges. We address 
observation biases in occurrence records through a target-background 
sampling approach. Although SDMs provide only relative probabilities 
of occurrence and may indicate habitat suitability, they do not imply 
that damages occur uniformly across the species’ entire range. These 
gaps are addressed in our ratio-scalar approach (‘Economic cost model’ 
section), which integrates both observed and interpolated areas. In addi-
tion, invasions are dynamic over time, whereas SDMs are often treated 
as static. To account for this, we incorporated a temporal threshold (t′), 
with the SDM acting as the asymptote in our model.

We used a comprehensive database detailing the locations of these 
invasions56 to identify countries that have not reported any costs despite 
the known presence of invasive species. We retrieved the initial period of 
invasion in each country from the Global Alien Species First Record data-
base version 1.17. When there was no estimate of time since invasion, we 
used the earliest record of the species in the target country from GBIF40. 
If neither the Global Alien Species First Record nor GBIF had records 
of an invasion in a country for a species, we used the asymptotic cost 
based on the suitability alone (that is, we treated it as an old invasion).

Economic cost model
We built an interpolation cost model that allowed species-specific costs 
estimates to be used, context-specific factors to be included and easy 
interpretation (that is, directional effect of context-specific factors). 
We used two approaches which conformed to these criteria––a general 
linear mixed model, using context-specific predictors as fixed factors, 
and species as a random factor, and a ‘ratio-scalar’ approach18 described 
below (equation (2)). For context-specific predictors, in addition to 
the suitability area (Sa, from equation (1)), we used three anthropogenic 
predictors: GDP, human population size and agricultural area from the 
World Bank 2021 (worldbank.org57) to predict the monetary costs of 
invasive species ( ̂C) across their global invaded geographic range (Sup-
plementary Fig. 3). GDP and human population size were chosen due 
to their well-documented relationships with economic impacts18. 
Similarly, agricultural area was selected as a key predictor because 
agriculture represents the highest overall and most prevalent sector 
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impacted across countries in the InvaCost database22. In notation, for 
the ratio-scalar model,

̂C
s,ci, j= 1

n

n
∑
k=1

Cs,ck, j

M
∏
m=1

(
Vm,ci
Vm,ck

)
γm (2)

where C is the the monetary cost documented in InvaCost per coun-
try; s denotes species; c denotes country; j denotes the type of 
cost (damage or management); V  denotes each of the four predic-
tors m, ci denotes country i where species s has been reported, and 
ck denotes country k where species s has been reported and where a 
monetary cost has been recorded. We set boundaries on scalar ratios 
using the highest (or lowest) values in the fitted economic model, to 
not interpolate beyond the range of the fitted data. The model handles 
a null effect of the predictors and either positive or negative effects18. 
The model calibrates suitable areas estimates using real cost data, 
accounting for the proportion of areas impacted. This approach does 
not assume that the entire suitable areas are susceptible to monetary 
costs and allows deviations where spatial extent is not correlated 
with costs (the fitted coefficient would approach 0). In addition, our 
ratio-scalar model allows us to account for the socio-economic context 
of each country through macro-economic predictors, ensuring that 
our predictions remain flexible.

We fit each economic model separately for each cost type (that 
is, damage and management), acknowledging that different types of 
cost can exhibit different underlying processes or be driven by dif-
ferent factors. Before modelling, we excluded outlier costs as those 
costs exceeding US$5 billion for damage (n = 3) and US$0.6 billion for 
management (n = 3). We examined all possible combinations of the 
predictor variables (ranging from a single-variable model to all four 
predictor variables) and used maximum likelihood with a Gaussian 
error distribution in the ratio-scalar model to determine the optimal 
set of parameters for each model, using the optim function in R58. 
For mixed models, the initial model included all predictors as fixed 
effects, with species as a random intercept. Subsequently, the model 
was refitted based on a reduced set of predictors that had statistically 
significant effects (that is, P < 0.05).

We calculated the Akaike’s information criterion for each 
combination of variables to evaluate the relative economic model  
performance and selected the economic models (that is, mixed 
model and ratio-scalar) with the lowest Akaike’s information criterion 
score. To validate the model’s performance, we used leave-one-out 
cross-validation by excluding each row and refitting the model.  
Subsequently, we estimated the economic cost of invasive species 
that were recorded but whose costs have not been assessed by the 
mixed model with the predict function and using equation (2) for 
the ratio-scalar model. In addition, we conducted 1,000 bootstrap 
samples with replacement to estimate the uncertainty of each model 
parameter (reporting the standard deviation). This methodology 
offers a more robust estimation of cost by offering an average and a 
range of each estimated cost (Supplementary Table 1). Final model 
predictions were based on combined predictions from both models 
(that is, mixed and ratio-scalar models), weighted by the R-square 
of each model.

Economic cost per unit area
To estimate the monetary cost of invasive species per spatial unit (km2) 
in a given country, we first estimated the total monetary cost of each 
species in each country as described in the section ‘Economic cost 
model’. We calculated the size of each cell A (km2), as follows:

A ≈ 8.3 km × 8.3 km = 68.89km2 (3)

where 8.3 km is based on the raster resolution of 0.0833° in both lati-
tude and longitude, giving an approximation of the actual area of the 

cell. The cost per km2 per species and per country is the total cost of 
the species in the country divided by the suitable area Sa.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data generated and analysed during this study are publicly avail-
able and can be accessed via GitHub at https://github.com/IsmaSA/
Invacost_SDM. Source data are provided with this paper.

Code availability
All codes generated during this study are available and can be accessed 
via GitHub at https://github.com/IsmaSA/Invacost_SDM.
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