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Biological invasions threaten global biodiversity, human well-being and
economies. Many regional and taxonomic syntheses of monetary costs
have been produced recently but with important knowledge gaps owing

to uneven geographic and taxonomic research intensity. Here we combine
species distribution models, macroeconomic data and the InvaCost
database to produce the highest resolution spatio-temporal cost estimates
currently available to bridge these gaps. From asubset of 162 invasive
species with ‘highly reliable’ documented costs at the national level, our
interpolation focuses on countries that have not reported any costs despite
the known presence of invasive species. This analysis demonstrates a
substantial underestimation, with global costs potentially estimated to be
518% higher for these species than previously recorded. This discrepancy
was uneven geographically and taxonomically, respectively peaking in Asia
and for plants. Our results showed that damage costs were primarily driven
by gross domestic product, human population size, agricultural area and
environmental suitability, whereas management expenditure correlated
with gross domestic product and agriculture areas. We also found alag time
for damage costs of 46 years, but management spending was not delayed.
The methodological predictive approach of this study provides amore
complete view of the economic dimensions of biological invasions and
narrows the global disparity ininvasion cost reporting.

Biological invasions pose aglobal threat to biodiversity, ecosystem ser-
vices and economies'. They are recognized as one of the five main bio-
diversity threats, contributing to 60% of recorded global extinctions>’.
Alongside the massive environmental and health impacts, the esti-
mated monetary cost of biological invasions exceeds those for most
natural hazards®, totaling a multi-trillion-dollar cost globally>¢. These
monetaryimpacts are escalating worldwide, inline with the rising rates
of introduction’,

ThelnvaCost database hasbegunto address the global knowledge
gapin costs of biological invasions by compiling and synthesizing data
on their monetary burden’. However, current estimates are mostly
based on published studies and thus represent only a subset of mon-
etary costs, oftenreflecting geographic and taxonomic biases in under-
lying research®'®", Most of the documented costs are concentrated in
Europe and North America’, thereby misrepresenting the economic
burden of invasive species present in other regions, including most
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of the global south", This skew leads to an underestimation of costs
inless-studied regions that has remained unresolved.

Considering the extensive data deficiencies, the growing eco-
nomic implications of biological invasions and the limited budgets
allocated to conservation, new approaches are urgently needed to
assess their monetary burden more accurately. Species distribution
models (SDMs) are used to predict the potential range of species by
quantifying their environmental suitability*. These models work by
correlating the known locations of species with environmental factors
in these locations. By combining the species occurrences predicted
by SDMs with the economic costs associated with these species, it is
possible to perform spatialinterpolations thatinclude regions where
economic costs have not yet been reported'*”, Despite strong links
between species range size and economic impacts of invasions', the
range estimates from SDMs and the invasion cost data reported by
InvaCost have yet to be fully synthesized. Considering the dynamic
nature of invasive species costs over space and time, SDMs could thus
be used toimprove global monetary estimates.

We integrate SDMs into invasion cost estimates by linking the
predicted suitable habitat area for invasive speciesin each country to
potential economicimpacts, while integrating further invasional and
macro-economic characteristics (Fig.1). Specifically, cost predictions
could be made in combination with data on the time since invasion
which in turn informs how economic costs might evolve temporally,
including potential time lags between the invasion and the appearance
of measurable impacts”. Macro-economic indicators, such as gross
domestic product (GDP), human population or agriculture area size
could also be relevant predictors of the monetary impact of invasive
speciesbecause they are directly tied to macro-economic factors (for
example, labour, capital)'®. Moreover, different types of cost, such as
damage costs and management expenditure, might exhibit divergent
spatio-temporal patterns. These costs are compounded by increased
economic activities and the potential for more extensive damage to
goods, production and infrastructure in densely populated or agri-
culturally intensive areas. Damage costs might rise rapidly with longer
invasionduration and expanding suitability area, whereas management

expenditure might start off lower and increase more gradually over
time or decrease as it becomes more efficient’.

Our study aims to estimate the monetary cost of invasive species
based on a method combining SDMs with macro-economic indica-
tors and spatio-temporal predictors. To achieve this, we (1) analyse
the differential patterns of damage and management expenditure;
(2) assess the interpolated monetary costs and their potential to pro-
vide a more accurate representation of costs in under-documented
regions, thereby shedding light on geographicbiases; and (3) providea
fine-scale map of global monetary costs. By relating range size to costs
withinacountry, we obtain unprecedented granularity in cost estima-
tion per unit area. This is critical because per unit costs underpin the
efficient allocation of resources, making it possible to assess returns
oninvestment and prioritize mitigation strategies”.

Results

Based on 162 invasive species in 172 countries, the assessment of the
missing costs showed a 17-fold discrepancy, that is, the difference
between costs reported in InvaCost and the total estimated costs. It rep-
resents a discrepancy of global cost of these species from US$126.81bil-
lion (reportedin InvaCost) to US$784.24 billion (approximately +518%;
range, US$228-5,025 billion) over the period 1960-2022, resulting in
anannualaverage of US$12.45 billion (Supplementary Table 1). Theensem-
ble economic model for damage costs (Supplementary Tables2 and 3)
predicted adiscrepancy in damage cost of 529%, corresponding to an
increase from US$117.73 to US$740.91 billion (range, US$213-4,539
billion). For management expenditure, the ensemble economic model
(Supplementary Tables 2 and 3) predicted adiscrepancy of +378%, equal
to anincrease from US$9.07 to US$43.38 billion (range, US$14-486
billion) (Supplementary Table 1).

For damage costs, the mixed model provided the best model (fit-
ted R?=0.52), with GDP, agricultural areaand environmental suitability
showing significant positive relationships (see Supplementary Table 2
for details, including both fitted and validation dataset results). The
bestratio-scalar model additionally found population size, time since
invasion and lag phases as significant predictors (fitted R?>=0.34;
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Fig. 2| Global economic cost associated with invasive species at the country
level. a,b, Costs are splitinto data from the InvaCost database for damage costs
(a) and management expenditure (b). ¢,d, Total economic costs (thatis, data
from the InvaCost plus estimated costs) for damage costs (c) and management
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cost from InvaCost to the total economic costs for damage costs (e) and
management expenditure (f).

Supplementary Table 2). By contrast, for management expenditures,
the ratio-scalar model was the strongest approach (fitted R*= 0.26),
with GDP and agricultural areas providing the main predictors (Sup-
plementary Table 2). For the mixed model, only GDP was significant for
management expenditures (fitted R = 0.23; Supplementary Table 2).
Importantly, similar patterns were observed for both fitted and vali-
dation datasets, supporting the robustness of our models. Ensemble
models of ratio-scalar and the mixed model were used for final cost
projections.

Geographic cost distributions
In addition to completing costs for undocumented species in some
countries, our costinterpolations also revealed costs for 78 countries
for which no data were previously available. Based on our interpola-
tion, atthe continental level, Europe had the highest potentialimpacts
frombiological invasions, reaching US$213.45 billion (27.22% of global
costs), followed by North America (US$201.26 billion, 25.66%), Asia
(US$20.23 billion, 8.21%), Africa (US$116.92 billion, 14.91%), South
America (US$67.52billion, 8.61%) and Oceania (US$28.11billion, 3.58%).
Asiareported a disproportionate discrepancy in costs correspond-
ingto +2,679%, followed by Europe (+1,939%), Africa (+1,768%), South
America (+809%), Oceania (+654%) and lastly, North America (+116%)
(Supplementary Fig.1and Supplementary Table 4). When focusing
on damage costs, Europe again had the highest estimated economic
burden, at US$199.18 billion, whereas the percentage discrepancy for
Asiawas again the most substantial at+2,790%, rising from US$5.21to
$150.78 billion (Supplementary Fig.1and Supplementary Table 4). For
management expenditures, Europe had the highest estimates costs
at $US14.27 billion and Africa the steepest percentage rise, reaching
+1,618%, from US$0.29 billion to US$4.99 billion (Supplementary Fig. 1
and Supplementary Table 4).

At the country level, the median cost discrepancy was +3,243%
(3,100% and 4,098% for damage and management, respectively).
However, there was a major discordance among countries, with some

showing remarkably higher increments were India (+973,077,392%),
followed by Sri Lanka (+11,406,804%) and the Netherlands
(+11,367,006%). The estimated costs were particularly acute for coun-
tries in Africa and Asia, where most had not previously recorded any
economic costs (see Fig.2). Interms of absolute estimated costs from
biological invasions, China had the highest estimates costs, at US$131
billion. When examining the discrepancy in damage costs, Sri Lanka
reported the mostsignificant rise at +11,406,904%, although the United
States had the highest absolute damage costs, amounting to US$46.44
billion. As for management expenditure related to these invasions,
India had the highest percentage discrepancy at +973,077,492%. Yet,
the United States again topped the list in terms of total expenditure
with US$10.47 billion (Supplementary Table 5).

Taxonomic cost interpolations

The estimated monetary burden of biological invasions varied across
taxonomic groups and types of cost. For damage costs, mammals
were the group with the highest estimates cost (US$247.75 billion; dis-
crepancy of +229%), followed by plants (US$231.62 billion; +1,013%),
arthopods (US$167.25 billion; +811%), birds (US$76.47 billion; +2,715%),
mollusks (US$16.23 billion; +8,810%) and fish (US$1.56 billion; +347%)
(Fig.3a). For management expenditures, plants were the costliest group
with the highest estimates cost (US$22.28 billion, +2,033 %), followed
by arthropods (US$9.00 billion; +203%), mammals (US$6.73 billion;
+224%) and birds (US$3.79 billion; +28%), while mollusks (+5,866%),
fish (+1,658%), amphibians (+22,702%) and reptiles (+14,914%) had
negligible costs totaling US$1.41billion (Fig. 3b). Fish had the greatest
average estimated damage costs (US$0.78 billion) and birds for man-
agement expenditures (US$0.49 billion) (Fig. 3c,d). We also identified
variations within eachtaxonomic group influenced by both the number
of cost estimates available and the individual magnitudes of these
estimates, with plants, fish and arthropods exhibiting above-average
damage costs, whereas birds exceeded the global average in manage-
ment expenditures (Fig. 3c,d).
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Monetary costs per unit area (km?)

Our high-resolution assessment of the monetary costs of biological
invasionsrevealed acomplex pattern of spatial heterogeneity in costs
estimated across the globe. We found large disparities at sub-national
level, with apparent ‘cost hot spots’ (that is, locations where the costs
are highest). Notably, we identified that these cost hot spots are pre-
dominantly located in densely populated urban areas, particularly in
coastal zones. Regionally, Europe, the east coast of China and the east
and west coasts of the USA were highly affected.

Among the species causing damage costs, Heracleum mantegaz-
zianum (giant hogweed) was estimated to be the most economically
burdensome, with an average cost of US$630,928 km? (Fig. 4). This
was followed by Carduus platypus (plumeless thistle; US$532,510
km?), Capra hircus (domestic goat; US$503,387 km?), Sus scrofa (wild
boar; US$456,536 km?) and Coptotermes formosanus (Formosan sub-
terranean termite; US$296,369 km?). For management expenditure,
Phelipanche aegyptiaca (Egyptian broomrape) was the costliest spe-
cies withan average cost US$1,335,975 km?, followed by Cryptotermes
brevis (West Indian drywood termite, US$433,828 km?), Reynoutria
japonica (Japanese knotweed, US$72,403 km?), Aedes aegypti (yellow
fever mosquito; US$44,937 km?), and Anolis carolinensis (Green Anole,
US$31,410 km?).

Area-based cost estimates revealed unprecedented mar-
ginal costs in Asian and North American countries, amounting to
US$25.71billion km?and US$10.48 billion km? respectively, followed
by Oceania (US$4.64 billion km?), Africa (US$4.01 billion km?), Asia
(US$2.74 billion km?) and South America (US$0.17 billion km?) (Sup-
plementary Fig. 2). Saint Kitts Nevis had the highest estimates cost
per unit area, amounting to approximately US$790,712 km? fol-
lowed by Liechtenstein and Micronesia, both exceeding costs of
US$700,000 km? Lastly, Andorrawith a cost of US$641,838 km? and
Malta (US$543,072 km?) complete the top-five costliest countries
per km? (Fig. 4).

Discussion

Integrating SDMs with cost prediction models based on socio-economic
factors enabled us to draw up amore complete picture of the monetary
costs of invasive species, marking anotable advancement in quantify-
ing their impacts. We revealed a considerable discrepancy of +518%
from US$126.81 billion to US$784.24 billion in estimated costs at the
global scale (focusing on the subset 0of 162 species). Our approach there-
fore offers insight into the magnitude of missing costs, particularly in
less-documented regions, suchas Africaand Asia, alongside agranular
assessment of the monetary costs of invasive species by country and
square kilometre. These results place the monetary cost of biologi-
calinvasions on a similar scale to the global costs of extreme weather
attributable to climate change” and surpass previous comparative
estimates for natural hazards®.

We included moderating factors in our models to account for
differences in socioeconomic contexts based on the data available.
Damage costs were driven mainly by GDP, human population size,
agriculture areaand environmentally suitable area (adjusted by time
sinceinvasion) commoninboth models (that is, ratio-scalar and mixed
models). Larger human populations result in higher damage costs
through more economic activities and greater invasion risks?, impact-
ing goods, production and infrastructure. Agriculture—the sector
most vulnerable to invasions*?—faces reduced yields and compro-
mised livestock health, elevating economic burdens®?*, Nevertheless,
invasive species impacts are not confined to agriculture sectors and
extend to others, such as public health and forestry. For instance, cats
Felis catus are one of the costliest invasive species, affecting many
sectors, including the environment, authorities and stakeholders,
and agriculture®. The extent of suitable areais anindicator of invasion
susceptibility affecting both damage and management costs. Lastly,
regions with high GDP indicate more resources and financial capacity
to invest in invasive species management but may also face greater
establishment rates and potential for spread, making management
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more difficult and costly. Nevertheless, management and damage
costs often occur simultaneously, as management efforts typically
respond to or coincide with damages. While our model accounts
for the variation in damage and management levels associated with
socioeconomic contexts, the complexinteractions between damage
and management effectiveness remain unexplored and are challeng-
ingtotestonaglobalscale.

Weidentified atime lag of -46 yearsbetween speciesintroduction
andthe peak of damage costs, suggesting that the monetary cost may
not be immediate (that is, the cost debt)* but increase over time, as
presumably the invasive species becomes more abundant or occupies
moresurfacearea. Thisindicates that pre-emptive measures to mitigate
the costs ofinvasive species should beimplemented as soon as possible
to limit the economic burden of invasive species in the future. Manage-
ment expenditure was, conversely, not characterized by a lag phase.
This suggests that measures are often implemented soon after (for
example, rapid response) or even before (for example, prevention) the
impacts of invasive species. The potential early application of manage-
ment actions is a positive sign and consistent with recent theoretical
analyses showing the importance of swift action®.

Our research addressed the bias presented in InvaCost database
towards high-income nations by estimating invasion costs in countries
previously undocumented, which is a common bias across all fields
of biodiversity science, as for example, global meta-analyses often
overlook a substantial proportion of the globe>**?°, Moreover, the
observed distribution of species occurrencesis also biased, with most
data in the Global Biodiversity Information Facility (GBIF) occurring
in North America and Europe and less than 7% of the surface sampled
evenat5 km?(ref.30). By projecting species occurrences more broadly,
weinclude agreater geographic scopeinouranalysis and enhance the
representativeness and applicability of our findings across diverse eco-
nomic contexts. We showed that several countries—mainly those with
lower GDPs or little research into the cost of invasive species—hadin fact
substantial monetary costs, in some cases exceeding their annual GDP
(forexample, Dominica). Collectively, the estimated economic costs of
invasive species exceed 3% of the global GDP. The initial geographical
bias was further exacerbated when the two categories of costs were dis-
tinguished, with agreater bias towards management expenditure sug-
gesting lower investment in invasion mitigation in developing regions™.
This disparity could stem from both limited resources and arecording
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biasintheInvaCost database, which may overlook reportsinlanguages
predominant in Africa and Asia”. In addition, the geographic origin of
costlyinvasions, primarily from Asia to Europe and the USA, contrasts
withthe minimal reported costs flowing to Africaand Asia, highlighting
aneed forbroader, moreinclusive data collection and analysis efforts*.

Monetary costs varied also in magnitude across taxonomic groups
and within types of cost. Based on the reported costs in InvaCost,
plants were respectively ranked second and fourth in damage and
management spending. After accounting forinterpolated costs, plants
reported a substantial increase (1,062%), becoming the second most
economically impactful group, confirming the underestimation bias
that has been previously highlighted for this group>*. Although they
represented a sizable fraction in InvaCost, our results suggest that
plant invasions were even more widespread in nature compared to
other taxonomic groups, relative to their frequency in InvaCost* ¢,
Nonetheless, arthropods, mammals and birds also reported consid-
erable total costs (Fig. 3), while other groups, such as molluscs, fish,
reptiles and amphibians generally had relatively low economic costs
(Fig.3).However, thismay be due to their lower observability interms of
damage costs (that s, particularly to human infrastructure)”, research
biases towards high-profile and more charismatic species® or dispari-
ties resulting from the filtering process used in the study.

Quantifying the monetary cost of invasive species per spatial unit
allows for a better impact assessment, aiding policymakers and con-
servationistsin prioritizing management efforts. Our analysis revealed
that a small fraction of locations (that is, hot spots)—often with high
human density or key industries—are associated with most of the costs,
as well as coastal regions—vulnerable due to trade and tourism®. The
highest costs per km? were predominantly in small countries which
might be explained by their relatively high population density and/or
dependence on the agricultural sector.

Ourresultsindicate that H. mantegazzianum, C.platypus, C. hircus,
S. scrofa, C. formosanus were the costliest species in terms of dam-
age costs, while P. aegyptiaca, C. brevis, R. japonica, A. aegypti, and
A. carolinensis required the highest management expenditure per
square kilometre. The reasons for theirimportantimpact vary among
species, such as prominent traits (for example, rapid reproduction or
high adaptability) that allow them to outcompete native species and
disrupt ecosystemsbutalso the economic sectors they affect, such as
agriculture or public health that represent substantial portions of the
global economy*. Management strategies for these species focus on
control and eradication of populations, which can be costly due to the
necessity for ongoing, intensive efforts®.

While our approach provides a more complete estimate of the
monetary costs of invasive species and addresses many geographi-
cal gaps in existing literature, it is not without limitations. Our study
included only species for which sufficient data were available for model
calibration (distribution and economic cost data), limiting our sample to
162 species out of 954 (17%) in the InvaCost database, thus likely under-
representing true costs. Economic estimates are subject to potential
measurementerrors, as cost datainherently vary inaccuracy and com-
pleteness; however, by focusing onmost reliable costs from InvaCost, we
tried to minimize these uncertainties, although they may still influence
the overall cost assessments presented. For instance, interpolated costs
for certain countries appear disproportionately large, surpassing their
entire GDP. These high estimates may arise frominherent limitationsin
the modelling process. Notably, such cases often involve small econo-
mies, suchasKiribati (GDP,,, = US$0.22 billion), where low GDP values
make suchdiscrepancies more likely. As with any statistical model, both
overestimations and underestimations are inevitable. While most values
align well with predicted relationships, some deviations are expected,
warranting caution when interpreting individual cases.

Inaddition, our approach spansseveral interconnected modelling
steps, each of which necessarily comes with their own source of uncer-
tainty and limitations (for example, transferability of SDMs*°). While

we included a temporal dimension, the lack of complete data on spe-
cies’firstoccurrences limited its effectiveness. While we acknowledge
that species distribution predictions may vary due to the exclusion of
ecological and socio-economic factors®, they provide the best projec-
tions available, and our model framework allows for the integration
of additional data where possible. Although we tried to account for
the socio-economic context of each estimated cost, we acknowledge
that estimates from developed countries may not translate fully to
less developed nations, where such data are often lacking. Finally,
improved investment and management policies, such as transitioning
to alternative crops that are less susceptible to damage, might affect
economic cost estimates.

Therefore, the conclusions of this study must necessarily be based
oncurrently available data (and its limitations), in particular, interpola-
tionbased on different socio-economic and agricultural contexts when
considering the varying cost effectiveness of management strategies
between developed and developing nations. Despite limitations in our
assumptions, our analysis reveals that adjusted costs are likely around
518 times higher than those recorded in InvaCost. Our findings not
only bolster the robustness of these results but also lay the founda-
tion for future research by refining analyses with, for example, map-
ping crop-specific pestimpacts, extending models to include sectors
suchasfisheries and forestry as predictors or other potential relevant
predictors such as transportation volume or split management costs
by private agents or public sector. These advances pave the way for
better assessment of the costs of these species in space and time and
provide information on their marginal costs, enabling cost-effective
management to be putin place worldwide.

Methods

Approach

Using the InvaCost database, we filtered country-level costs for aset of
162invasive species (out of 954 species in InvaCost) with highly reliable
economic cost dataat the nationallevel, while separately considering
damage and management costs (Supplementary Fig. 3). Foreach spe-
cies, we used ensemble SDMs (generalized additive models (GAMs) and
maximum entropies (maxents)) to determine the amount of suitable
areaineachinvaded country andincorporated two temporal predictors
by considering the time since invasion and lag phases in the detection
oftheimpacts that can modulate economic costs. Finally, we modeled
costs against aset of macro-economic factors (thatis, GDP, population
size and agriculture area'®) and, using the best ensemble economic
model (averaging ratio-scalar and mixed model), we interpolated the
missing costsin the countries where these species have beenreported
but no monetary costs have been recorded (Supplementary Fig. 3).
Translocation of species that are native to other areas within the same
country (e.g., the signal crayfish Pacifastacus leniusculusin the United
States), were not considered in this analyses. The following sections
describe the main steps of this methodology in detail.

Monetary costs

We first identified species whose costs were recorded in InvaCost, a
‘living’ database of the monetary cost of invasive species worldwide
reported in over 22 languages, to interpolate the monetary cost of
invasive species on a global scale®>*'. Each cost entry is standardized
inannual US$ (2017 value) and has 65 descriptors, including the type of
theinvaded ecosystem and the taxonomy of the species. We excluded
from the InvaCost database (1) less reliable and potential costs (the
former referring to costs lacking documented, repeatable and trace-
able methods, typically from grey/non-peer-reviewed sources, the
latter to costs expected and/or predicted over time within or beyond
theiractual distribution area), (2) costs at alower scale than the coun-
try level and (3) costs for which data were insufficient or entries were
unspecified (thatis, with respect to spatial dimension, habitat type or
nature of cost) (see Supplementary Information, Material 1 for more
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details). This filtering process resulted in the retention of 162 species
(70 plants, 37 arthropods, 29 mammals, 10 birds, 5 molluscs, 4 reptiles,
4 fish and 3 amphibians; Supplementary Table 6). The total cost for
each estimate and species was divided by the corresponding duration
of the cost entry, determined by the time elapsed between the ‘Prob-
able_starting_year_adjusted’and the ‘Probable_ending_year_adjusted’
columns using the expandYearlyCosts function, to standardize cost
estimates as annual costs*.

SDMs

We fitted SDMs using occurrences retrieved from the GBIF (gbif.org*)
database for each of the 162 species (Supplementary Table 6) alongside
a combination of bioclimatic, anthropogenic and human-mediated
spread variables (Supplementary Fig. 3 and Supplementary Table 7).
These were compared against 10,000 background points, generated
for each taxonomic group (plants, arthropods, reptiles, amphibians,
mammals, birds, molluscs and fish). To minimize sampling bias in
presence-only data, we used the ‘target-group background’ approach*,
basing the pseudo-absences on randomly sampling GBIF records for
each taxonomic group. This reduces observation and spatial biases
because pseudo-absences would be chosen using the same observa-
tion processes***,

For environmental variables, we downloaded 19 bioclimatic
variables at global scale and at 5 x 5 arc min resolution (0.0833°)
from WorldClim, which describe means, extremes and seasonality
intemperature and precipitation from 1970-2000 (ref. 46) (Supple-
mentary Table 7). We complemented these with anthropogenic and
environmental variables demonstrated to provide high predictive
power for determining the presence of invasive species. Environ-
mental variables included elevation, slope, rugosity and potential
evapotranspiration*”** (Supplementary Table 7), while also including
density of roads extracted from the Global Roads Open Access Data
Set, version1*, which was used as a proxy for ease of human-mediated
spread®®. We standardized the predictorsinto grid cells to match the
resolution of the WorldClim dataset (that s, 5 x 5 arc min). We mini-
mized the collinearity among predictors by calculating the variance
inflation factor of all variables using the vifstep function of the usdm
R package (version 2.1.7)*" and removing variables using a threshold
value of 10 (Supplementary Table 7).

We used two versatile algorithms that can handle non-linear rela-
tionshipsto predict the potential suitable distribution for eachinvasive
species: GAMs using the mgcv R package (version 1.8)*? and maxent
using the maxnet R package®*. While our approach to SDMs focused
on the fundamental principles of the methodology, we meticulously
adhered to the established standards®* (ODMAP (Overview, Data,
Model, Assessment and Prediction) protocol; Supplementary Note
1), thereby ensuring the replicability of our analysis and the transpar-
ency, robustness and reliability of our results. For GAMs, we limited
the number of knots (that is, smooth terms) to 5 and used the selec-
tion function and cross-validation option to prevent overfitting of the
model to our data. Furthermore, we examined the concurvity (thatis,
the correlation of the smooth functions of the predictors) for each
variable and removed variables with high concurvity (>0.8) using the
concurvity function from the mgcv R package to reduce multicollinear-
ity*>. For maxents, we used ‘transformed features’—modified versions
of the original predictors, for example, linear, quadratic—to enhance
the model’s predictive capabilities. To mitigate the risk of possible
overfitting, we limited the model complexity to linear, quadratic and
product features® while using the default settings in the maxnet pack-
age>for all other parameters with the regularization applied*. Lastly,
we created aweighted ensemble SDM that integrates both algorithms,
weighting by the area under the curve of each modelling approach.
Predictions fromthe ensemble models were then used to estimate the
suitable area, which was calculated as the sum of the probabilities for
agivenspeciesinacountry.

To evaluate the performance of the models, we used a fivefold
cross-validation and three metrics for evaluating predictive models:
the area under the curve, the true skill statistic and the Boyce index
(Supplementary Information, Materials 2 and 3).

Suitable area per country

We would expect that countries are not uniformly environmentally
suitable for each species. Furthermore, as invasions tend to spread,
we would expect that costs might also not be constant over time. We
tested these predictions by modelling a temporal suitability and cost
impact model. This model accounts for variations in environmental
suitability and the associated economic costs over time within each
country. It uses alogistic growth functionto encapsulate the changing
suitability of an area for a species (denoted as S,,), parameterized by
bothaconstant (b,) and atime-varying coefficient (b,). This allows us to
capture a possibleinitial phase of delay with costs initially minimal and
graduallyincreasing as the species becomes established and spreads.

G

Zi:j:l Sij

Sqg=——"""7"—7—
47 1 4 e~(bo+byt')

; ¢ ={0if t < by; t— by if t > by} ]

where ;= summed suitability area of acountry scores across G grid cells
ijand t=time (years) sinceinvasion. Inaddition, we modeled a potential
lag phase (b,). This was done by fitting an additional temporal threshold
(t'), whereiftislowerthanb,, t’ wassetto 0, such that cost would be at the
minimallevel (set by b,). Our model does not incorporate economic dis-
counting offuture costs. Instead, all costs are weighted equally over time,
with temporal variations in cost strictly governed by the logistic func-
tionin equation (1). While SDMs come with several limitations, our use
of SDMs for interpolation helps mitigate these challenges. We address
observationbiasesin occurrence records through atarget-background
sampling approach. Although SDMs provide only relative probabilities
of occurrence and may indicate habitat suitability, they do not imply
that damages occur uniformly across the species’ entire range. These
gapsareaddressedin our ratio-scalarapproach (‘Economic cost model’
section), whichintegratesboth observed and interpolated areas. Inaddi-
tion, invasions are dynamic over time, whereas SDMs are often treated
asstatic. Toaccount for this, weincorporated atemporal threshold (¢'),
with the SDM acting as the asymptote in our model.

We used acomprehensive database detailing thelocations of these
invasions*® toidentify countries that have not reported any costs despite
the known presence of invasive species. We retrieved the initial period of
invasionineach country fromthe Global Alien Species First Record data-
base version1.1’. When there was no estimate of time since invasion, we
used the earliest record of the species in the target country from GBIF*°.
If neither the Global Alien Species First Record nor GBIF had records
of aninvasion in a country for a species, we used the asymptotic cost
based on the suitability alone (that is, we treated it as an old invasion).

Economic cost model

Webuiltaninterpolation cost model that allowed species-specific costs
estimates to be used, context-specific factors tobeincluded and easy
interpretation (that is, directional effect of context-specific factors).
We used two approaches which conformed to these criteria-—ageneral
linear mixed model, using context-specific predictors as fixed factors,
andspeciesasarandom factor, and a ‘ratio-scalar’ approach'® described
below (equation (2)). For context-specific predictors, in addition to
the suitability area (S,, fromequation (1)), we used three anthropogenic
predictors: GDP, human populationsize and agricultural areafrom the
World Bank 2021 (worldbank.org) to predict the monetary costs of
invasive species (€) across their global invaded geographic range (Sup-
plementary Fig. 3). GDP and human population size were chosen due
to their well-documented relationships with economic impacts'®.
Similarly, agricultural area was selected as a key predictor because
agriculture represents the highest overall and most prevalent sector
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impacted across countries in the InvaCost database®. In notation, for
the ratio-scalar model,

1 n M Ve ym
Sichj= > Cs,[kj Hl< L )
k=1 >

m=1\ Vmyc

2

where Cis the the monetary cost documented in InvaCost per coun-
try; s denotes species; c denotes country; j denotes the type of
cost (damage or management); V denotes each of the four predic-
tors m, c;denotes country i where species s has been reported, and
c,denotes country k where species s has been reported and where a
monetary cost has been recorded. We set boundaries on scalar ratios
using the highest (or lowest) values in the fitted economic model, to
notinterpolatebeyond the range of the fitted data. The model handles
anull effect of the predictors and either positive or negative effects’®.
The model calibrates suitable areas estimates using real cost data,
accounting for the proportion of areasimpacted. Thisapproach does
not assume that the entire suitable areas are susceptible to monetary
costs and allows deviations where spatial extent is not correlated
with costs (the fitted coefficient would approach 0). In addition, our
ratio-scalar model allows us to account for the socio-economic context
of each country through macro-economic predictors, ensuring that
our predictions remain flexible.

We fit each economic model separately for each cost type (that
is, damage and management), acknowledging that different types of
cost can exhibit different underlying processes or be driven by dif-
ferent factors. Before modelling, we excluded outlier costs as those
costs exceeding US$5 billion for damage (n = 3) and US$0.6 billion for
management (n = 3). We examined all possible combinations of the
predictor variables (ranging from a single-variable model to all four
predictor variables) and used maximum likelihood with a Gaussian
error distribution in the ratio-scalar model to determine the optimal
set of parameters for each model, using the optim function in R,
For mixed models, the initial model included all predictors as fixed
effects, with species as a random intercept. Subsequently, the model
wasrefitted based on areduced set of predictors that had statistically
significant effects (thatis, P < 0.05).

We calculated the Akaike’s information criterion for each
combination of variables to evaluate the relative economic model
performance and selected the economic models (that is, mixed
model and ratio-scalar) with the lowest Akaike’s information criterion
score. To validate the model’s performance, we used leave-one-out
cross-validation by excluding each row and refitting the model.
Subsequently, we estimated the economic cost of invasive species
that were recorded but whose costs have not been assessed by the
mixed model with the predict function and using equation (2) for
the ratio-scalar model. In addition, we conducted 1,000 bootstrap
samples withreplacement to estimate the uncertainty of each model
parameter (reporting the standard deviation). This methodology
offers a more robust estimation of cost by offering an average and a
range of each estimated cost (Supplementary Table 1). Final model
predictions were based on combined predictions from both models
(that is, mixed and ratio-scalar models), weighted by the R-square
of each model.

Economic cost per unit area

Toestimate the monetary cost of invasive species per spatial unit (km?)
in a given country, we first estimated the total monetary cost of each
species in each country as described in the section ‘Economic cost
model’. We calculated the size of each cell A (km?), as follows:

A~ 83km x 8.3km = 68.89 km’ 3)

where 8.3 km is based on the raster resolution of 0.0833° in both lati-
tude and longitude, giving an approximation of the actual area of the

cell. The cost per km? per species and per country is the total cost of
the speciesin the country divided by the suitable area §,,.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All data generated and analysed during this study are publicly avail-
able and can be accessed via GitHub at https://github.com/IsmaSA/
Invacost_SDM. Source data are provided with this paper.

Code availability
Allcodes generated during this study are available and canbe accessed
via GitHub at https://github.com/IsmaSA/Invacost_SDM.
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